满分5 > 高中数学试题 >

已知x,y,z均为正数.求证:.

已知x,y,z均为正数.求证:manfen5.com 满分网
分别对,,进行化简分析,得出与的关系,然后三个式子左右分别相加除以2即可得到结论. 证明:因为x,y,z都是为正数, 所以   ① 同理可得                     ②                     ③ 当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2, 得:
复制答案
考点分析:
相关试题推荐
在极坐标系中,求经过三点O(0,0),A(2,manfen5.com 满分网),B(2manfen5.com 满分网manfen5.com 满分网)的圆的极坐标方程.

manfen5.com 满分网 查看答案
选修4-2:矩阵与变换
已知圆C:x2+y2=1在矩阵manfen5.com 满分网(a>0,b>0)对应的变换作用下变为椭圆manfen5.com 满分网=1,求a,b的值.
查看答案
选修4-1:几何证明选讲
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,求证:∠PDE=∠POC.

manfen5.com 满分网 查看答案
设函数f(x)=ax3-(a+b)x2+bx+c,其中a>0,b,c∈R.
(1)若manfen5.com 满分网=0,求函数f(x)的单调增区间;
(2)求证:当0≤x≤1时,|f'(x)|≤max{f'(0),f'(1)}.(注:max{a,b}表示a,b中的最大值)
查看答案
已知数列{an}满足:a1=a2=a3=2,an+1=a1a2…an-1(n≥3),记bn-2=a12+a22+…+an2-a1a2…an(n≥3).
(1)求证数列{bn}为等差数列,并求其通项公式;
(2)设manfen5.com 满分网,数列{manfen5.com 满分网}的前n项和为Sn,求证:n<Sn<n+1.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.