满分5 > 高中数学试题 >

已知数列{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=1...

已知数列{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16
(1)求数列{an}的通项公式;
(2)数列{an}和数列{bn}满足等式an=manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Sn
(1)设等差数列{an}的公差为d,分别表示出a2a6=55,a2+a7=16联立方程求得d和a1进而根据等差数列通项公式求得an. (2)令cn=,则有an=c1+c2+…+cn,an+1=c1+c2+…+cn+1两式相减得cn+1等于常数2,进而可得bn,进而根据b1=2a1求得b1则数列{bn}通项公式可得,进而根据从第二项开始按等比数列求和公式求和再加上b1. 【解析】 (1)设等差数列{an}的公差为d, 则依题意可知d>0由a2+a7=16, 得2a1+7d=16① 由a3a6=55,得(a1+2d)(a1+5d)=55② 由①②联立方程求得 得d=2,a1=1或d=-2,a1=(排除) ∴an=1+(n-1)•2=2n-1 (2)令cn=,则有an=c1+c2+…+cn an+1=c1+c2+…+cn+1 两式相减得 an+1-an=cn+1,由(1)得a1=1,an+1-an=2 ∴cn+1=2,即cn=2(n≥2), 即当n≥2时, bn=2n+1,又当n=1时,b1=2a1=2 ∴bn= 于是Sn=b1+b2+b3+…+bn=2+23+24+…2n+1=2n+2-6,n≥2, .
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网.如下定义一列函数:f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn-1(x)),…,n∈N*,那么由归纳推理可得函数fn(x)的解析式是fn(x)=    查看答案
已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称.直线4x-3y-2=0与圆C相交与A、B两点,且|AB|=6,则圆C的方程为    查看答案
在长方体ABCD-A1B1C1D1中,AA1=AD=2AB,若E,F分别为线段A1D1,CC1的中点,则直线EF与平面ABB1A1所成角的余弦值为_    查看答案
manfen5.com 满分网如图,EFGH 是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该院内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则
(1)P(A)=    ;           
(2)P(B|A)=    查看答案
设U为全集,对集合X,Y,定义运算“*”,X*Y=∁U(X∩Y).对于任意集合X,Y,Z,则( X*Y )*Z=( )
A.(X∪Y)∩∁U Z
B.(X∩Y)∪∁U Z
C.(∁U X∪∁U Y )∩Z
D.(∁U X∩∁U Y )∪Z
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.