满分5 > 高中数学试题 >

已知中心在原点O,焦点在x轴上,离心率为的椭圆过点(,). (1)求椭圆的方程;...

manfen5.com 满分网已知中心在原点O,焦点在x轴上,离心率为manfen5.com 满分网的椭圆过点(manfen5.com 满分网manfen5.com 满分网).
(1)求椭圆的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
(1)设出椭圆的方程,将已知点代入椭圆的方程及利用椭圆的离心率公式得到关于椭圆的三个参数的等式,解方程组求出a,b,c的值,代入椭圆方程即可. (2)设出直线的方程,将直线方程与椭圆方程联立,消去x得到关于y的二次方程,利用韦达定理得到关于两个交点的坐标的关系,将直线OP,PQ,OQ的斜率用坐标表示,据已知三个斜率成等比数列,列出方程,将韦达定理得到的等式代入,求出k的值,利用判别式大于0得到m的范围,将△OPQ面积用m表示,求出面积的范围. 【解析】 (1)由题意可设椭圆方程为(a>b>0),则 则故 所以,椭圆方程为. (2)由题意可知,直线l的斜率存在且不为0, 故可设直线l的方程为y=kx+m(m≠0),P(x1,y1),Q(x2,y2), 由消去y得 (1+4k2)x2+8kmx+4(m2-1)=0, 则△=64k2b2-16(1+4k2b2)(b2-1)=16(4k2-m2+1)>0, 且,. 故y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2. 因为直线OP,PQ,OQ的斜率依次成等比数列, 所以=k2, 即+m2=0,又m≠0, 所以k2=,即k=. 由于直线OP,OQ的斜率存在,且△>0,得 0<m2<2且m2≠1. 设d为点O到直线l的距离, 则S△OPQ=d|PQ|=|x1-x2||m|=, 所以S△OPQ的取值范围为(0,1).
复制答案
考点分析:
相关试题推荐
如图,已知△AOB,∠AOB=manfen5.com 满分网,∠BAO=manfen5.com 满分网,AB=4,D为线段AB的中点.若△AOC是△AOB绕直线AO旋转而成的.记二面角B-AO-C的大小为θ.
(Ⅰ) 当平面COD⊥平面AOB时,求θ的值;
(Ⅱ) 当θ∈[manfen5.com 满分网manfen5.com 满分网]时,求二面角C-OD-B的余弦值的取值范围.

manfen5.com 满分网 查看答案
在一次人才招聘会上,有A、B、C三种不同的技工面向社会招聘.已知某技术人员应聘A、B、C三种技工被录用的概率分别是0.8、0.5、0.2 (允许受聘人员同时被多种技工录用).
(I)求该技术人员被录用的概率;
(Ⅱ)设X表示该技术人员被录用的工种数与未被录用的工种数的积.
i) 求X的分布列和数学期望;
ii)“设函数manfen5.com 满分网是偶函数”为事件D,求事件D发生的概率.
查看答案
已知数列{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16
(1)求数列{an}的通项公式;
(2)数列{an}和数列{bn}满足等式an=manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Sn
查看答案
已知函数manfen5.com 满分网.如下定义一列函数:f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn-1(x)),…,n∈N*,那么由归纳推理可得函数fn(x)的解析式是fn(x)=    查看答案
已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称.直线4x-3y-2=0与圆C相交与A、B两点,且|AB|=6,则圆C的方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.