利用A∩B={2,5},说明2,5∈A,则必有a3-2a2-a+7=5,然后求解a,进行检验.
【解析】
因为A∩B={2,5},所以2,5∈A,则必有a3-2a2-a+7=5,解得a=2或a=±1.
当a=1时,a2-2a+2=1,与元素的互异性矛盾,所以a=1不成立.
当a=-1时,集合a={2,4,5},B={1,0,2,4,5},此时A∩B={2,4,5},与A∩B={2,5}矛盾,所以a=-1不成立.
当a=2时,集合A={2,4,5},B={1,3,2,5,25},满足A∩B={2,5},所以a=2成立.
综上,满足条件的实数a=2.