(Ⅰ)由题设条件及图可得出an+1=an+(n+1),由此递推式可以得出数列{an}的通项为,an=n(n+1),由此可列举出三角形数1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…
,从而可归纳出可被5整除的三角形数每五个数中出现两个,即每五个数分为一组,则该组的后两个数可被5整除,由此规律即可求出b2012在数列{an}中的位置;
(II)由(I)中的结论即可得出b2k-1═(5k-1)(5k-1+1)=.
【解析】
(I)由题设条件可以归纳出an+1=an+(n+1),故an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+…+2+1=n(n+1)
由此知,三角数依次为1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…
由此知可被5整除的三角形数每五个数中出现两个,即每五个数分为一组,则该组的后两个数可被5整除,
由于b2012是第2012个可被5整除的数,故它出现在数列{an}按五个一段分组的第1006组的最后一个数,由此知,b2012是数列{an}中的第1006×5=5030个数
故答案为5030
(II)由于2k-1是奇数,由(I)知,第2k-1个被5整除的数出现在第k组倒数第二个,故它是数列{an}中的第k×5-1=5k-1项,所以b2k-1═(5k-1)(5k-1+1)=
故答案为