满分5 > 高中数学试题 >

已知曲线C的极坐标方程是ρ=2sinθ,设直线l的参数方程是(t为参数). (1...

已知曲线C的极坐标方程是ρ=2sinθ,设直线l的参数方程是manfen5.com 满分网(t为参数).
(1)将曲线C的极坐标方程转化为直角坐标方程;
(2)设直线l与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.
(1)极坐标直接化为直角坐标,可求结果. (2)直线的参数方程化为直角坐标方程,求出M,转化为两点的距离来求最值. 【解析】 (1)曲C的极坐标方程可化为:ρ2=2ρsinθ, 又x2+y2=ρ2,x=ρcosθ,y=ρsinθ. 所以,曲C的直角坐标方程为:x2+y2-2y=0. (2)将直线L的参数方程化为直角坐标方程得:. 令y=0得x=2即M点的坐标为(2,0) 又曲线C为圆,圆C的圆心坐标为(0,1) 半径,∴.
复制答案
考点分析:
相关试题推荐
如图所示,点P在圆O:x2+y2=4上,PD⊥x轴,点M在射线DP上,且满足manfen5.com 满分网(λ≠0).
(Ⅰ)当点P在圆O上运动时,求点M的轨迹C的方程,并根据λ取值说明轨迹C的形状.
(Ⅱ)设轨迹C与x轴正半轴交于点A,与y轴正半轴交于点B,直线2x-3y=0与轨迹C交于点E、F,点G在直线AB上,满足manfen5.com 满分网,求实数λ的值.

manfen5.com 满分网 查看答案
已知椭圆C1manfen5.com 满分网的离心率为e,且b,e,manfen5.com 满分网为等比数列,曲线y=8-x2恰好过椭圆的焦点.
(1)求椭圆C1的方程;
(2)设双曲线C2manfen5.com 满分网的顶点和焦点分别是椭圆C1的焦点和顶点,设O为坐标原点,点A,B分别是C1和C2上的点,问是否存在A,B满足manfen5.com 满分网.请说明理由.若存在,请求出直线AB的方程.
查看答案
已知平面上一定点C(2,O)和直线l:x=8,P为该平面上一动点,作PQ⊥l,垂足为Q,且manfen5.com 满分网
(1)问点P在什么曲线上?并求出该曲线的方程;
(2)若EF为圆N:x2+(y-1)2=1的任一条直径,求manfen5.com 满分网的最大值.
查看答案
点P(x,y)是抛物线y2=4x的准线与不等式组manfen5.com 满分网所围成区域内的任意一点.若2x+y的最大值等于双曲线manfen5.com 满分网的实轴长,则该双曲线的渐近线方程为    查看答案
已知椭圆manfen5.com 满分网的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线.切点为T,且|PT|的最小值为manfen5.com 满分网,则椭圆的离心率e的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.