满分5 > 高中数学试题 >

如图,四棱锥P-ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD为梯形,...

如图,四棱锥P-ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC,点E在棱PB上,且PE=2EB.
(1)求证:平面PAB⊥平面PCB;
(2)求证:PD∥平面EAC.

manfen5.com 满分网
(1)根据PA⊥底面ABCD,得到PA⊥BC,结合AB⊥BC,可得BC⊥平面PAB.最后根据面面垂直的判定定理,可证出平面PAB⊥平面PCB. (2)利用线面垂直的性质,可得在直角梯形ABCD中AC⊥AD,根据题中数据结合平行线分线段成比例,算出DC=2AB,从而得到△BPD中,PE:EB=DM:MB=2,所以PD∥EM,由线面平行的判定定理可得PD∥平面EAC. 【解析】 (1)∵PA⊥底面ABCD,BC⊆底面ABCD,∴PA⊥BC, 又∵AB⊥BC,PA∩AB=A,∴BC⊥平面PAB. ∵BC⊂平面PCB,∴平面PAB⊥平面PCB. (2)∵PA⊥底面ABCD,∴AC为PC在平面ABCD内的射影. 又∵PC⊥AD,∴AC⊥AD.          在梯形ABCD中,由AB⊥BC,AB=BC,得, ∴. 又∵AC⊥AD,故△DAC为等腰直角三角形. ∴. 连接BD,交AC于点M,则由AB∥CD得:. 在△BPD中,,所以PD∥EM 又∵PD⊄平面EAC,EM⊂平面EAC, ∴PD∥平面EAC.
复制答案
考点分析:
相关试题推荐
平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,manfen5.com 满分网,O、M分别为CE、AB的中点.
(I)求证:OD∥平面ABC;
(II)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.

manfen5.com 满分网 查看答案
已知正三棱锥S-ABC中,E是侧棱SC的中点,且SA⊥BE,则SB与底面ABC所成角的余弦值为    查看答案
设l,m,n为三条不同的直线,a为一个平面,对于下列命题:
①若l⊥a,则l与a相交;
②若m⊂a,n⊂a,l⊥m,l⊥n,则l⊥a;
③若l∥m,m∥n,l⊥a,则n⊥a;
④若l∥m,m⊥a,n⊥a,则l∥n.
其中正确命题的序号是    查看答案
已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,三棱锥A-BCD的底面是等腰直角三角形,AB⊥平面BCD,AB=BC=BD=2,E是棱CD上的任意一点,F、G分别是AC、BC的中点,则在下面的命题中:①平面ABE⊥平面BCD;②平面EFG∥平面ABD;③四面体FECG的体积最大值是manfen5.com 满分网,真命题的个数是( )
manfen5.com 满分网
A.0
B.1
C.2
D.3
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.