满分5 > 高中数学试题 >

如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为A...

如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2.
(1)求证:AB1∥平面BC1D;
(2)若四棱锥B-AA1C1D的体积为3,求二面角C-BC1-D的正切值.

manfen5.com 满分网
(1)在平面BC1D内找到一条直线与已知直线AB1平行,根据线面平行的判定定理证明线面平行,而找平行的方法一般是找三角形的中位线或找平行四边形. (2)根据题中的垂直关系表达出四棱锥的体积进而得到等式求出BC的数值,结合这题中的线面垂直关系作出二面角,再证明此角就是所求角然后求出即可. 【解析】 (1)证明:连接B1C,设B1C与BC1相交于点O,连接OD, ∵四边形BCC1B1是平行四边形, ∴点O为B1C的中点. ∵D为AC的中点, ∴OD为△AB1C的中位线, ∴OD∥AB1. ∵OD⊂平面BC1D,AB1⊄平面BC1D, ∴AB1∥平面BC1D. (2)【解析】 依题意知,AB=BB1=2, ∵AA1⊥平面ABC,AA1⊂平面AA1C1C, ∴平面ABC⊥平面AA1C1C,且平面ABC∩平面AA1C1C=AC. 作BE⊥AC,垂足为E,则BE⊥平面AA1C1C, 设BC=a, 在Rt△ABC中,,, ∴四棱锥B-AA1C1D的体积==a. 依题意得,a=3,即BC=3. ∵AB⊥BC,AB⊥BB1,BC∩BB1=B,BC⊂平面BB1C1C,BB1⊂平面BB1C1C, ∴AB⊥平面BB1C1C. 取BC的中点F,连接DF,则DF∥AB,且. ∴DF⊥平面BB1C1C. 作FG⊥BC1,垂足为G,连接DG, 由于DF⊥BC1,且DF∩FG=F, ∴BC1⊥平面DFG. ∵DG⊂平面DFG, ∴BC1⊥DG. ∴∠DGF为二面角C-BC1-D的平面角. 由Rt△BGF~Rt△BCC1,得, 得, 在Rt△DFG中,=. ∴二面角C-BC1-D的正切值为.
复制答案
考点分析:
相关试题推荐
已知侧棱垂直于底面的三棱柱CDE-C1D1E1的顶点都在同一球面上,在△CDE中,∠DCE=60°,CD=5,CE=4,该球的体积为manfen5.com 满分网,则三棱锥C1-CDE的体积为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
manfen5.com 满分网如图,一个正三棱柱的左(侧)视图是边长为manfen5.com 满分网的正方形,则它的外接球的表面积等于( )
A.8π
B.manfen5.com 满分网π
C.9π
D.manfen5.com 满分网π
查看答案
如图所示为一个简单几何体的三视图,则其对应的几何体是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,manfen5.com 满分网,且M是BD的中点.
(Ⅰ)求证:EM∥平面ADF;
(Ⅱ)在EB上是否存在一点P,使得∠CPD最大?若存在,请求出∠CPD的正切值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如左图所示,直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别是边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4,将四边形EFCD沿EF折起使AE=AD,如右图所示.
(1)求证:AF∥平面CBD;
(2)求三棱锥C-ABF的体积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.