满分5 > 高中数学试题 >

如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,...

如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(Ⅱ)设AB=1,求多面体ABCDE的体积.

manfen5.com 满分网
(Ⅰ)取CE中点P,连接FP、BP,证明ABPF为平行四边形,可得AF∥BP,从而可得AF∥平面BCE. (II)计算直角梯形ABED的面积,C到平面ABDE的距离,即可求得多面体ABCDE的体积. (Ⅰ)证明:取CE中点P,连接FP、BP, ∵F为CD的中点,∴FP∥DE,且FP=. 又AB∥DE,且AB= ∴AB∥FP,且AB=FP, ∴ABPF为平行四边形, ∴AF∥BP. 又∵AF⊄平面BCE,BP⊂平面BCE, ∴AF∥平面BCE. (II)【解析】 ∵直角梯形ABED的面积为=3,C到平面ABDE的距离为, ∴四棱锥C-ABDE的体积为=.即多面体ABCDE的体积为.
复制答案
考点分析:
相关试题推荐
已知{an}是正数组成的数列,a1=1,且点(manfen5.com 满分网)(n∈N*)在函数y=x2+1的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若列数{bn}满足b1=1,bn+1=bn+manfen5.com 满分网,求证:bn•bn+2<b2n+1
查看答案
设函数f(x)=manfen5.com 满分网(x>0),观察:
 f1(x)=f(x)=manfen5.com 满分网
 f2(x)=f(f1(x))=manfen5.com 满分网
 f3(x)=f(f2(x))=manfen5.com 满分网
 f4(x)=f(f3(x))=manfen5.com 满分网

根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn-1(x))=    查看答案
已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称.直线4x-3y-2=0与圆C相交与A、B两点,且|AB|=6,则圆C的方程为    查看答案
在长方体ABCD-A1B1C1D1中,AA1=AD=2AB,若E,F分别为线段A1D1,CC1的中点,则直线EF与平面ABB1A1所成角的余弦值为_    查看答案
函数y=sin(x-manfen5.com 满分网)cosx的最小值    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.