(1)不等式即|x-1|+|x+2|≥5,由于|x-1|+|x+2|表示数轴上的x对应点到-2和1对应点的距离之和,而-3和2对应点到-2和1对应点的距离之和正好等于5,由此求得不等式的解集.
(2)若关于x的不等式f(x)>a2-2a对于任意的x∈R恒成立,故f(x)的最小值大于a2-2a.而由绝对值的意义可得f(x)的最小值为3,可得 3>a2-2a,由此解得a的范围.
【解析】
(1)不等式即|x-1|+|x+2|≥5,由于|x-1|+|x+2|表示数轴上的x对应点到-2和1对应点的距离之和,
而-3和2对应点到-2和1对应点的距离之和正好等于5,故不等式的解集为(-∞,-3]∪[2,+∞).
(2)若关于x的不等式f(x)>a2-2a对于任意的x∈R恒成立,故f(x)的最小值大于a2-2a.
而由绝对值的意义可得f(x)的最小值为3,
∴3>a2-2a,解得-1<a<3,
故所求的a的取值范围为(-1,3).