满分5 > 高中数学试题 >

已知椭圆的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在一点P使...

已知椭圆manfen5.com 满分网的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在一点P使manfen5.com 满分网,则该椭圆的离心率的取值范围为   
由“”的结构特征,联想到在△PF1F2中运用由正弦定理得:两者结合起来,可得到,再由焦点半径公式,代入可得到:a(a+ex)=c(a-ex)解出x,由椭圆的范围,建立关于离心率的不等式求解.要注意椭圆离心率的范围. 【解析】 在△PF1F2中, 由正弦定理得: 则由已知得:, 即:a|PF1|=c|PF2| 设点(x,y)由焦点半径公式, 得:|PF1|=a+ex,|PF2|=a-ex 则a(a+ex)=c(a-ex) 解得: 由椭圆的几何性质知:x>-a则, 整理得e2+2e-1>0,解得:或,又e∈(0,1), 故椭圆的离心率:, 故答案为:.
复制答案
考点分析:
相关试题推荐
椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是manfen5.com 满分网,则这个椭圆方程为    查看答案
若椭圆manfen5.com 满分网的离心率等于manfen5.com 满分网,则 m=   
查看答案
已知直线l:2x+4y+3=0,P为l上的动点,O为坐标原点.若manfen5.com 满分网,则点Q的轨迹方程是    查看答案
已知圆manfen5.com 满分网和圆manfen5.com 满分网,动圆M同时与圆C1及圆C2外切,则动圆圆心M的轨迹方程为    查看答案
从点(2,3)射出的光线沿与直线x-2y=0平行的直线射到y轴上,则经y轴反射的光线所在的直线方程为    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.