满分5 > 高中数学试题 >

设V是全体平面向量构成的集合,若映射f:V→R满足:对任意向量a=(x1,y1)...

设V是全体平面向量构成的集合,若映射f:V→R满足:对任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f(λa+(1-λ)b)=λf(a)+(1-λ)f(b)则称映射f具有性质P.先给出如下映射:
①f1:V→R,f1(m)=x-y,m=(x,y)∈V;
②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;
③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.
其中,具有性质P的映射的序号为    .(写出所有具有性质P的映射的序号)
求出两个向量的和的坐标;分别对三个函数求与的值,判断哪个函数具有. 【解析】 ,则+(1-λ)y2} 对于①,=λx1+(1-λ)x2-λy1-(1-λ)y2=λ(x1-y1)+(1-λ)(x2-y2) 而=λ(x1-y1)+(1-λ)(x2-y2)满足性质P 对于②f2(λa+(1-λb))=[λx1+(1-λ)x2]2+[λy1+(1-λ)y2],λf2(a)+(1-λ)f2(b)=λ(x12+y1)+(1-λ)(x22+y2) ∴f2(λa+(1-λb))≠λf2(a)+(1-λ)f2(b),∴映射f2不具备性质P. 对于③=λx1+(1-λ)x2+λy1+(1-λ)y2+1=λ(x1+y1)+(1-λ)(x2+y2)+1 而=λ(x1+y1+1)+(1-λ)(x2+y2+1)═λ(x1+y1)+(1-λ)(x2+y2)+1 满足性质p 故答案为:①③
复制答案
考点分析:
相关试题推荐
设有两个命题p、q,其中命题p:对于任意的x∈R,不等式ax2+2x+1>0恒成立;命题q:f(x)=(4a-3)x在R上为减函数.如果两个命题中有且只有一个是真命题,那么实数a的取值范围是    查看答案
设集合M={1,2,3,4,5,6},S1,S2,…,Sk都是M的含两个元素的子集,且满足:对任意的Si={ai,bi},Sj={aj,bj}(i≠j,i、j∈{1,2,3,…,k}),都有manfen5.com 满分网(min{x,y}表示两个数x,y中的较小者),则k的最大值是    查看答案
设集合manfen5.com 满分网,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是    查看答案
设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},U=R,若(CUA)∩B=∅,则实数a的取值范围是    查看答案
下面四个条件中,使a>b成立的充分而不必要的条件是( )
A.a>b+1
B.a>b-1
C.a2>b2
D.a3>b3
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.