满分5 > 高中数学试题 >

已知抛物线L:x2=2py(p>0)和点M(2,2),若抛物线L上存在不同的两点...

已知抛物线L:x2=2py(p>0)和点M(2,2),若抛物线L上存在不同的两点A、B满足manfen5.com 满分网
(1)求实数p的取值范围;
(2)当p=2时,抛物线L上是否存在异于A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线?若存在,求出点C的坐标;若不存在,请说明理由.
(1)先利用得M为AB的中点,把直线AB的方程与抛物线方程联立借助于判别式大于0求出实数p的取值范围; (2)先利用圆过A、B、C三点求出圆心坐标和点C坐标之间的关系,再利用抛物线L在点C处切线与NC垂直求出点C的坐标即可. 【解析】 (1)设A,B两点的坐标为A(x1,y1),B(x2,y2),且x1<x2. ∵,查得M为AB的中点,即x1+x2=4.显然直线AB与x轴不垂直, 设直线AB的方程为y-2=k(x-2), 即y=kx+2-2k,将y=kx+2-2k代入x2=2py中,得x2-2pkx+4(k-1)p=0. ∴,∴p>1,故p的取值范围为(1,+∞). (2)当p=2时,由(1)求得A,B的坐标分别为A(0,0),B(4,4). 假设抛物线L:x2=4y上存在点(t≠0且t≠4), 使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线.设圆的圆心坐标为N(a,b), ∵,∴ 即解得. ∵抛物线L在点C处切线的斜率为,而t≠0,且该切线与NC垂直, ∴. 即. 将代入上式,得t3-2t2-8t=0, 即t(t-4)(t+2)=0. ∵t≠0且t≠4, ∴t=-2.故存在满足题设的点C,其坐标为(-2,1).
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.
查看答案
(某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元,用η表示经销一辆汽车的利润.
付款方式分1期分2期分3期分4期分5期
频数4020a10b
(Ⅰ)求上表中的a,b值;
(Ⅱ)若以频率作为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的频率P(A);
(Ⅲ)求η的分布列及数学期望Eη.
查看答案
在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=manfen5.com 满分网acosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,求a,c的值.
查看答案
假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号     (下面摘取了随机数表第7行至第9行).
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25   83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07   44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42   99 66 02 79 54. 查看答案
若x,y满足约束条件manfen5.com 满分网,则x-y的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.