满分5 > 高中数学试题 >

设函数f(x)=|x-1|+|x-a|, (1)若a=-1,解不等式f(x)≥3...

设函数f(x)=|x-1|+|x-a|,
(1)若a=-1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范围.
(1)当a=-1,原不等式变为:|x-1|+|x+1|≥3,下面利用对值几何意义求解,利用数轴上表示实数-左侧的点与表示实数右侧的点与表示实数-1与1的点距离之和不小3,从而得到不等式解集. (2)欲求当x∈R,f(x)≥2,a的取值范围,先对a进行分类讨论:a=1;a<1;a>1.对后两种情形,只须求出f(x)的最小值,最后“x∈R,f(x)≥2”的充要条件是|a-1|≥2即可求得结果. 【解析】 (1)当a=-1时,f(x)=|x-1|+|x+1|,由f(x)≥3有|x-1|+|x+1|≥3 据绝对值几何意义求解,|x-1|+|x+1|≥3几何意义,是数轴上表示实数x的点距离实数1,-1表示的点距离之和不小3, 由于数轴上数-左侧的点与数右侧的点与数-1与1的距离之和不小3, 所以所求不等式解集为(-∞,-]∪[,+∞) (2)由绝对值的几何意义知,数轴上到1的距离与到a的距离之和大于等于2恒成立,则1与a之间的距离必大于等于2,从而有a∈(-∞,-1]∪[3,+∞)
复制答案
考点分析:
相关试题推荐
选修4-4;坐标系与参数方程
已知直线C1manfen5.com 满分网(t为参数),C2:ρ=1.
(Ⅰ)当α=manfen5.com 满分网时,求C1与C2的交点坐标;
(Ⅱ)以坐标原点O为圆心的圆与C1的相切,切点为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.
查看答案
选修4-1:几何证明选讲
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.OE交AD于点F.
(1)求证:DE是⊙O的切线;
(2)若manfen5.com 满分网,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
已知函数f(x)=x2-ax-aln(x-1)(a∈R).
(1)求函数f(x)的单调区间;
(2)试判断是否存在实数a(a≥1),使y=f(x)的图象与直线manfen5.com 满分网无公共点(其中自然对数的底数为无理数且=2.71828…).
查看答案
已知抛物线L:x2=2py(p>0)和点M(2,2),若抛物线L上存在不同的两点A、B满足manfen5.com 满分网
(1)求实数p的取值范围;
(2)当p=2时,抛物线L上是否存在异于A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线?若存在,求出点C的坐标;若不存在,请说明理由.
查看答案
manfen5.com 满分网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.