满分5 > 高中数学试题 >

已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一...

manfen5.com 满分网已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=manfen5.com 满分网AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
由PA=AC=AB,N为AB上一点,AB=4AN,我们不妨令PA=1,然后以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系.由此不难得到各点的坐标(1)要证明CM⊥SN,我们可要证明即可,根据向量数量积的运算,我们不难证明; (2)要求SN与平面CMN所成角的大小,我们只要利用求向量夹角的方法,求出SN和方向向量与平面CMN的法向量的夹角,再由它们之间的关系,易求出SN与平面CMN所成角的大小. 证明:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图. 则P(0,0,1),C(0,1,0),B(2,0,0), M(1,0,),N(,0,0),S(1,,0).(4分) (Ⅰ), 因为, 所以CM⊥SN(6分) (Ⅱ), 设a=(x,y,z)为平面CMN的一个法向量, 则令x=2,得a=(2,1,-2). 因为, 所以SN与片面CMN所成角为45°.
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网=(3,1,5),manfen5.com 满分网=(1,2,-3),若manfen5.com 满分网manfen5.com 满分网=9,manfen5.com 满分网manfen5.com 满分网=-4.
(1)若向量manfen5.com 满分网垂直于空间直角坐标系的z轴,试求manfen5.com 满分网的坐标;
(2)是否存在向量manfen5.com 满分网,使得manfen5.com 满分网与z轴共线?试说明理由.
查看答案
如图所示,在各个面都是平行四边形的四棱柱ABCD-A1B1C1D1中,P是CA1的中点,M是CD1的中点,N是C1D1的中点,点Q在CA1上,且CQ:QA1=4:1,设manfen5.com 满分网,用基底{a,b,c}表示以下向量:
(1)manfen5.com 满分网
(2)manfen5.com 满分网
(3)manfen5.com 满分网
(4)manfen5.com 满分网

manfen5.com 满分网 查看答案
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(Ⅰ)若F为PC的中点,求证PC⊥平面AEF;
(Ⅱ)求证CE∥平面PAB.

manfen5.com 满分网 查看答案
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,
(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求证:AC⊥平面EDB.

manfen5.com 满分网 查看答案
已知在空间四边形ABCD中,AB=CD=3,点E、F分别是边BC和AD上的点,并且BE:EC=AF:FD=1:2,EF=manfen5.com 满分网,求异面直线AB和CD所成角的大小.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.