满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=...

manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2manfen5.com 满分网,∠PAB=60°.
(Ⅰ)证明AD⊥平面PAB;
(Ⅱ)求异面直线PC与AD所成的角的大小;
(Ⅲ)求二面角P-BD-A的大小.
(I)由题意在△PAD中,利用所给的线段长度计算出AD⊥PA,在利用矩形ABCD及线面垂直的判定定理及、此问得证; (II)利用条件借助图形,利用异面直线所称角的定义找到共面得两相交线,并在三角形中解出即可; (III)由题中的条件及三垂线定理找到二面角的平面角,然后再在三角形中解出角的大小即可. 【解析】 (Ⅰ)证明:在△PAD中,由题设PA=2,PD=2, 可得PA2+AD2=PD2于是AD⊥PA. 在矩形ABCD中,AD⊥AB.又PA∩AB=A, 所以AD⊥平面PAB. (Ⅱ)【解析】 由题设,BC∥AD, 所以∠PCB(或其补角)是异面直线PC与AD所成的角. 在△PAB中,由余弦定理得 PB= 由(Ⅰ)知AD⊥平面PAB,PB⊂平面PAB, 所以AD⊥PB,因而BC⊥PB,于是△PBC是直角三角形,故tanPCB=. 所以异面直线PC与AD所成的角的大小为arctan. (Ⅲ)【解析】 过点P做PH⊥AB于H,过点H做HE⊥BD于E,连接PE 因为AD⊥平面PAB,PH⊂平面PAB,所以AD⊥PH.又AD∩AB=A, 因而PH⊥平面ABCD,故HE为PE再平面ABCD内的射影. 由三垂线定理可知,BD⊥PE,从而∠PEH是二面角P-BD-A的平面角. 由题设可得, PH=PA•sin60°=,AH=PA•cos60°=1, BH=AB-AH=2,BD=, HE= 于是再RT△PHE中,tanPEH= 所以二面角P-BD-A的大小为arctan.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.
查看答案
如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是对角线AB1,BC1上的点,且manfen5.com 满分网=manfen5.com 满分网,求证:MN∥平面A1B1C1D1

manfen5.com 满分网 查看答案
四面体ABCD中,E、G分别为BC、AB的中点,F在CD上,H在AD上,且有DF:FC=2:3.DH:HA=2:3.
(1)证明:点G、E、F、H四点共面;
(2)证明:EF、GH、BD交于一点.
查看答案
如图所示,正方体ABCD-A1B1C1D1中,A1C与截面DBC1交于O点,AC,BD交于M点,求证:C1,O,M三点共线.
查看答案
manfen5.com 满分网如图1,在直角梯形ABEF中(图中数字表示线段的长度),将直角梯形DCEF沿CD折起,使平面DCEF⊥平面ABCD,连接部分线段后围成一个空间几何体,如图2.
(Ⅰ)求证:BE∥平面ADF;
(Ⅱ)求三棱锥F-BCE的体积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.