满分5 > 高中数学试题 >

已知曲线C:f(x)=x2,C上的点A,An的横坐标分别为1和an(n∈N*),...

已知曲线C:f(x)=x2,C上的点A,An的横坐标分别为1和an(n∈N*),且a1=5,数列{xn}满足manfen5.com 满分网,设区间Dn=[1,an](an>1),当x∈Dn时,曲线C上存在点Pn(xn,f(xn)),使得点Pn处的切线与直线AAn平行.
(1)证明:{logt(xn-1)+1}是等比数列;
(2)当Dn+1⊊Dn对一切n∈N*恒成立时,求t的取值范围;
(3)记数列{an}的前n项和为Sn,当manfen5.com 满分网时,试比较Sn与n+7的大小,并证明你的结论.
(1)由线在点Pn的切线与直线AAn平行,知,由xn+1=tf(xn+1-1)+1,得xn+1-1=t(xn-1)2,由此能够证明{logt(xn-1)+1}是等比数列. (2)由logt(xn-1)+1=(logt2+1)•2n-1,得.从而,由Dn+1⊊Dn对一切n∈N*恒成立,得an+1<an,由此能求出t的取值范围. (3)当时,,所以,由此能够比较比较Sn与n+7的大小. 【解析】 (1)∵由线在点Pn的切线与直线AAn平行, ∴,即, 由xn+1=tf(xn+1-1)+1,得xn+1-1=t(xn-1)2, ∴logt(xn+1-1)=1+2logt(xn-1), 即logt(xn+1-1)+1=2[logt(xn-1)+1], ∴{logt(xn-1)+1}是首项为logt2+1,公比为2的等比数列. (2)由(1)得logt(xn-1)+1=(logt2+1)•2n-1, ∴. 从而, 由Dn+1⊊Dn对一切n∈N*恒成立, 得an+1<an, 即, ∴0<2t<1, 即. (3)当时,, ∴, 当n≤3时,2n-1≤n+1; 当n≥4时,2n-1>n+1, ∴当n≤3时,<n+7. 当n≥4时,Sn< = <n+7. 综上所述,对任意的n∈N*,都有Sn<n+7.
复制答案
考点分析:
相关试题推荐
已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对n∈N+均有manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网=an+1成立,求c1+c2+…+c2013的值.
查看答案
在数列{an}中,已知a1=2,an+1=manfen5.com 满分网(n∈N*),且满足manfen5.com 满分网ai(ai-1)<m(m为常数,且为整数).
(1)求证:为{manfen5.com 满分网-1}等比数列;
(2)求m的最小值.
查看答案
设数列{an}的前n项和为Sn,a1=1,an=manfen5.com 满分网+2(n-1)(n∈N*).
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(2)设数列{manfen5.com 满分网}的前n项和为Tn,证明:manfen5.com 满分网≤Tnmanfen5.com 满分网
(3)是否存在自然数n,使得S1+manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网-(n-1)2=2011?若存在,求出n的值;若不存在,请说明理由.
查看答案
已知等差数列{an}中,公差d>0,前n项和为Sn,a2•a3=45,a1+a5=18.
(1)求数列的{an}通项公式;
(2)令bn=manfen5.com 满分网(n∈N*),是否存在一个非零数C,使数列{Bn}也为等差数列?若存在,求出c的值;若不存在,请说明理由.
查看答案
已知二次函数k≤1图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上;又b1=1,cn=manfen5.com 满分网(an+2),且1+2a2+22b3+…+2n-2bn-1+2n-1bn=cn,对任意n∈N*都成立,
(1)求数列{an},{bn}的通项公式;
(2)求数列{cn•bn}的前n项和Tn
(3)求证:(i)ln(x+1)<(x>0);(ii)manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网(n∈N*,n≥2).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.