满分5 > 高中数学试题 >

四棱锥P-ABCD的底面是边长为a的正方形,PA⊥平面ABCD,侧棱PB与底面A...

四棱锥P-ABCD的底面是边长为a的正方形,PA⊥平面ABCD,侧棱PB与底面ABCD所成的角为60°,则这个四棱锥的体积是   
利用线面垂直和线面角即可得出四棱锥的高PA,再利用四棱锥的体积计算公式即可得出. 【解析】 如图所示, ∵PA⊥平面ABCD,∴PA⊥AB,∴∠PBA=60°. 又AB=a,∴PA=AB•tan60°=. ∴VP-ABCD= = =. 故答案为.
复制答案
考点分析:
相关试题推荐
已知m,n是两条不同的直线,α,β为两个不同的平面,
有下列四个命题:
①若m⊥α,n⊥β,m⊥n,则α⊥β;
②若m∥α,n∥β,m⊥n,则α∥β;
③若m⊥α,n∥β,m⊥n,则α∥β;
④若m⊥α,n∥β,α∥β,则m⊥n.
其中正确的命题是(填上所有正确命题的序号)    查看答案
若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则    (写出所有正确结论编号)
①四面体ABCD每组对棱相互垂直
②四面体ABCD每个面的面积相等
③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°
④连接四面体ABCD每组对棱中点的线段互垂直平分
⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长. 查看答案
P为△ABC所在平面外的一点,则点P在此三角形所在平面上的射影是△ABC垂心的充分必要条件是( )
A.PA=PB=PC
B.PA⊥BC,PB⊥AC
C.点P到△ABC三边所在直线距离相等
D.平面PAB、平面PBC、平面PAC与△ABC所在的平面所成的角相等
查看答案
已知三条不重合的直线m、n、l与两个不重合的平面α、β,有下列命题:
①若m∥n,n⊂α,则m∥α;
②若l⊥α,m⊥β且l∥m,则α∥β;
③若m⊂α,n⊂α,m∥β,n∥β,则α∥β;
④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.
其中正确的命题个数是( )
A.1
B.2
C.3
D.4
查看答案
平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是( )
A.AB∥CD
B.AD∥CB
C.AB与CD相交
D.A,B,C,D四点共面
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.