满分5 > 高中数学试题 >

如图,在五棱锥P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,A...

如图,在五棱锥P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2manfen5.com 满分网,BC=2AE=4,三角形PAB是等腰三角形.
(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)求直线PB与平面PCD所成角的大小;
(Ⅲ)求四棱锥P-ACDE的体积.

manfen5.com 满分网
(Ⅰ)要证平面PCD⊥平面PAC,只需证明平面PCD内的直线CD,垂直平面PAC内的两条相交直线PA、AC即可; (Ⅱ)过点A作AH⊥PC于H,说明∠PBO为所求角,然后解三角形求直线PB与平面PCD所成角的大小,也可以利用空间直角坐标系,求出向量,平面PCD的一个法向量,计算,即可. (Ⅲ)直接求出底面面积和高,再求四棱锥P-ACDE的体积. 【解析】 (Ⅰ)证明:因为∠ABC=45°,AB=2,BC=4, 所以在△ABC中,由余弦定理得:,解得, 所以AB2+AC2=8+8=16=BC2,即AB⊥AC, 又PA⊥平面ABCDE,所以PA⊥AB, 又PA∩AC=A,所以AB⊥平面PAC,又AB∥CD,所以CD⊥平面PAC, 又因为CD⊂平面PCD,所以平面PCD⊥平面PAC; (Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC, 所以在平面PAC内,过点A作AH⊥PC于H, 则AH⊥平面PCD,又AB∥CD,AB⊄平面PCD内,所以AB平行于平面PCD, 所以点A到平面PCD的距离等于点B到平面PCD的距离,过点B作BO⊥平面PCD于点O, 则∠BPO为所求角,且AH=BO,又容易求得AH=2, 所以,即∠BPO=30°, 所以直线PB与平面PCD所成角的大小为30°; 另【解析】 (Ⅱ)因为△PAB为等腰三角形,所以 又AB∥CD,所以点B到平面PCD的距离等于点A到平面PCD的距离. 由CD⊥平面PAC,在Rt△PAC中,,所以PC=4. 故PC边上的高为2,即点A到平面的距离,即点点B到平面PCD的距离为2. 设直线PB与平面PCD所成的角为θ,则, 又,所以. (Ⅱ)由(Ⅰ)知AB,AC,AP两两互相垂直, 分别以AB,AC,AP为x,y,z轴建立如图所示的空间直角坐标系, 由△PAB为等腰直角三角形,所以, 而,则 因为AC∥ED,CD⊥AC,所以四边形ACDE是直角梯形. 因为AE=2,∠ABC=45°,AE∥BC,所以∠BAE=135°,∠CAE=45°, 故,所以. 因此,设是平面PCD的一个法向量, 则,解得x=0,y=z.取y=1,得, 而. 设θ表示向量与平面PCD的法向量所成的角,则 因此直线PB与平面PCD所成角的大小为; (Ⅲ)由(Ⅰ)知CD⊥平面PAC,所以CD⊥AC,又AC∥ED,所以四边形ACDE是直角梯形,又容易求得,AC=,所以四边形ACDE的面积为,所以四棱锥P-ACDE的体积为=.
复制答案
考点分析:
相关试题推荐
四棱锥P-ABCD的底面是边长为a的正方形,PA⊥平面ABCD,侧棱PB与底面ABCD所成的角为60°,则这个四棱锥的体积是    查看答案
已知m,n是两条不同的直线,α,β为两个不同的平面,
有下列四个命题:
①若m⊥α,n⊥β,m⊥n,则α⊥β;
②若m∥α,n∥β,m⊥n,则α∥β;
③若m⊥α,n∥β,m⊥n,则α∥β;
④若m⊥α,n∥β,α∥β,则m⊥n.
其中正确的命题是(填上所有正确命题的序号)    查看答案
若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则    (写出所有正确结论编号)
①四面体ABCD每组对棱相互垂直
②四面体ABCD每个面的面积相等
③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°
④连接四面体ABCD每组对棱中点的线段互垂直平分
⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长. 查看答案
P为△ABC所在平面外的一点,则点P在此三角形所在平面上的射影是△ABC垂心的充分必要条件是( )
A.PA=PB=PC
B.PA⊥BC,PB⊥AC
C.点P到△ABC三边所在直线距离相等
D.平面PAB、平面PBC、平面PAC与△ABC所在的平面所成的角相等
查看答案
已知三条不重合的直线m、n、l与两个不重合的平面α、β,有下列命题:
①若m∥n,n⊂α,则m∥α;
②若l⊥α,m⊥β且l∥m,则α∥β;
③若m⊂α,n⊂α,m∥β,n∥β,则α∥β;
④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.
其中正确的命题个数是( )
A.1
B.2
C.3
D.4
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.