如图所示,已知PA⊥平面ABCD,PA=AB=AD=2,AC与BD交于E点,BD=2,BC=CD=
.
(1)取PD的中点F,求证:PB∥平面AFC;
(2)求多面体PABCF的体积.
考点分析:
相关试题推荐
如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是CD上的点且
,PH为△PAD中AD边上的高.
(1)证明:PH⊥平面ABCD;
(2)若PH=1,
,FC=1,求三棱锥E-BCF的体积;
(3)证明:EF⊥平面PAB.
查看答案
如图所示,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在的平面垂直于底面ABCD.
(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)求二面角A-BC-P的大小;
(4)若E为BC边的中点,能否在棱PC上找一点F,使得平面DEF⊥平面ABCD?并证明你的结论.
查看答案
如图,在五棱锥P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2
,BC=2AE=4,三角形PAB是等腰三角形.
(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)求直线PB与平面PCD所成角的大小;
(Ⅲ)求四棱锥P-ACDE的体积.
查看答案
四棱锥P-ABCD的底面是边长为a的正方形,PA⊥平面ABCD,侧棱PB与底面ABCD所成的角为60°,则这个四棱锥的体积是
.
查看答案
已知m,n是两条不同的直线,α,β为两个不同的平面,
有下列四个命题:
①若m⊥α,n⊥β,m⊥n,则α⊥β;
②若m∥α,n∥β,m⊥n,则α∥β;
③若m⊥α,n∥β,m⊥n,则α∥β;
④若m⊥α,n∥β,α∥β,则m⊥n.
其中正确的命题是(填上所有正确命题的序号)
.
查看答案