满分5 > 高中数学试题 >

设点M(x,y)到直线x=4的距离与它到定点(2,0)的距离之比为,并记点M的轨...

设点M(x,y)到直线x=4的距离与它到定点(2,0)的距离之比为manfen5.com 满分网,并记点M的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点(2,0)作直线l与曲线C相交于A、B两点,问C上是否存在点P,使得manfen5.com 满分网=manfen5.com 满分网+manfen5.com 满分网成立?若存在,求出直线l的方程;若不存在,说明理由.
(Ⅰ)由题意利用两点间的距离公式可得:,整理即可. (Ⅱ)设A(x1,y1),B(x2,y2),由题意知l的斜率一定不为0,故不妨设l:x=my+2.代入C的方程并整理得到根与系数的关系;假设存在点P,使成立⇔点P的坐标(x1+x2,y1+y2)满足椭圆的方程.又A、B在椭圆上,即满足椭圆的方程.可得x1x2+2y1y2+4=0,代入解得m,即可得到点P的坐标. 【解析】 (Ⅰ)由题意可得:,整理得C:. (Ⅱ)设A(x1,y1),B(x2,y2),由题意知l的斜率一定不为0,故不妨设l:x=my+2. 代入C的方程,并整理得(m2+2)y2+4my-4=0,显然△>0. 由韦达定理有:,,① 假设存在点P,使成立,则其充要条件为: 点P的坐标为(x1+x2,y1+y2),点P在椭圆上,即. 整理得. 又A、B在椭圆上,即,. 故x1x2+2y1y2+4=0        ② 将x1x2=(my1+2)(my2+2)=m2y1y2+2m(y1+y2)+4及①代入②解得m2=2. ∴或,=2,即点P.      所以,存在点P,使得, 这时直线l的方程为或.
复制答案
考点分析:
相关试题推荐
在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=manfen5.com 满分网,M、N分别为AB、SB的中点.
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的余弦值;
(Ⅲ)求三棱锥N-BCM的体积.

manfen5.com 满分网 查看答案
一个社会调查机构就某社区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).
(1)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,求月收入在[1500,2000)(元)段应抽出的人数;
(2)为了估计该社区3个居民中恰有2个月收入在[2000,3000)(元)的概率,采用随机模拟的方法:先由计算器算出0到9之间取整数值的随机数,我们用0,1,2,3,…表示收入在[2000,3000)(元)的居民,剩余的数字表示月收入不在[2000,3000)(元)的居民;再以每三个随机数为一组,代表统计的结果,经随机模拟产生了20组随机数如下:
907  966  191  925  271  932  812  458
569  683  431  257  393  027  556  488
730  113  537  989
据此估计,计算该社区3个居民中恰好有2个月收入在[2000,3000)(元)的概率.
(3)任意抽取该社区6个居民,用ξ表示月收入在(2000,3000)(元)的人数,求ξ的数学期望.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间manfen5.com 满分网上的最小值和最大值.
查看答案
在等边三角形ABC中,M、N、P分别为AB、AC、BC的中点,沿MN将△AMN折起,使得面AMN与面MNCB所成的二面角的余弦值为manfen5.com 满分网,则直线AM与NP所成角α应满足    查看答案
已知F是抛物线C:y2=8x的焦点,过F作倾斜角为60°的直线交抛物线于A、B两点.设manfen5.com 满分网manfen5.com 满分网,且|FA|>|FB|,则λ=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.