满分5 > 高中数学试题 >

若数列{an}满足:对任意的n∈N﹡,只有有限个正整数m使得am<n成立,记这样...

若数列{an}满足:对任意的n∈N,只有有限个正整数m使得am<n成立,记这样的m的个数为(an+,则得到一个新数列{(an+}.例如,若数列{an}是1,2,3…,n,…,则数列{(an+}是0,1,2,…,n-1…已知对任意的n∈N+,an=n2,则(a5+=    ,((an++=   
根据题意,若am<5,而an=n2,知m=1,2,∴(a5)+=2,由题设条件可知((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,于是猜想:((an)+)+=n2. 【解析】 ∵am<5,而an=n2,∴m=1,2,∴(a5)+=2. ∵(a1)+=0,(a2)+=1,(a3)+=1,(a4)+=1, (a5)+=2,(a6)+=2,(a7)+=2,(a8)+=2,(a9)+=2, (a10)+=3,(a11)+=3,(a12)+=3,(a13)+=3,(a14)+=3,(a15)+=3,(a16)+=3, ∴((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16, 猜想:((an)+)+=n2. 答案:2,n2.
复制答案
考点分析:
相关试题推荐
数列{an}中,a1=1,且Sn,Sn+1,2S1成等差数列(Sn表示数列{an}的前n项和),则S2,S3,S4分别为    ,由此猜想出Sn=    查看答案
{an}满足:a4n-3=1,a4n-1=0,a2n=an,n∈N*则a2009=    ;a2014=    查看答案
manfen5.com 满分网如图,n2(n≥4)个正数排成n行n列方阵:符号aij(1≤i,j≤n)表示位于第i行第j列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q.若manfen5.com 满分网,a24=1,manfen5.com 满分网,则q=    ,aij=    查看答案
manfen5.com 满分网如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为manfen5.com 满分网(n≥2),每个数是它下一行左右相邻两数的和,如manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,…,则第10行第4个数(从左往右数)为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知整数以按如下规律排成一列:(1,1)、(1,2)、(2,1)、(1,3)、(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( )
A.(10,1)
B.(2,10)
C.(5,7)
D.(7,5)
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.