满分5 > 高中数学试题 >

设A(x1,y1),B(x2,y2)是椭圆,(a>b>0)上的两点,已知向量=(...

设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网,(a>b>0)上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),且manfen5.com 满分网,若椭圆的离心率manfen5.com 满分网,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(Ⅰ)根据题意可求得b,进而根据离心率求得a和c,则椭圆的方程可得. (Ⅱ)设出直线AB的方程,与椭圆方程联立消去y,表示出x1+x2和x1x2,利用建立方程求得k. (Ⅲ)先看当直线的斜率不存在时,可推断出x1=x2,y1=-y2,根据=0求得x1和y1的关系式,代入椭圆的方程求得|x1|和|y1|求得三角形的面积;再看当直线斜率存在时,设出直线AB的方程,与椭圆方程联立,利用韦达定理表示出x1+x2和x1x2,利用=0求得2b2-k2=4,最后利用弦长公式和三角形面积公式求得答案. 【解析】 (Ⅰ)2b=2.b=1,e= 椭圆的方程为 (Ⅱ)由题意,设AB的方程为y=kx+ 由已知=0得: = ,解得k=± (Ⅲ)(1)当直线AB斜率不存时,即x1=x2,y1=-y2, 由=0 又A(x1,y1)在椭圆上,所以 S= 所以三角形的面积为定值 (2)当直线AB斜率存在时,设AB的方程为y=kx+b 得到x1+x2= 代入整理得: 2b2-k2=4 = 所以三角形的面积为定值
复制答案
考点分析:
相关试题推荐
椭圆的两焦点坐标分别为manfen5.com 满分网manfen5.com 满分网,且椭圆过点manfen5.com 满分网
(1)求椭圆方程;
(2)过点manfen5.com 满分网作不与y轴垂直的直线l交该椭圆于M、N两点,A为椭圆的左顶点,试判断∠MAN的大小是否为定值,并说明理由.
查看答案
已知直线l:y=x+manfen5.com 满分网,圆O:x2+y2=5,椭圆E:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率e=manfen5.com 满分网,直线l被圆O截得的弦长与椭圆的短轴长相等.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证两切线斜率之积为定值.
查看答案
椭圆manfen5.com 满分网的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M若MF1垂直于x轴,则椭圆的离心率为    查看答案
已知F1、F2分别为双曲线manfen5.com 满分网(a>0,b>0)的左、右焦点,若双曲线左支上存在一点P使得manfen5.com 满分网=8a,则双曲线的离心率的取值范围是    查看答案
已知双曲线manfen5.com 满分网=1(a>0,b>0)的离心率e=2,过双曲线上一点M作直线MA,MB交双曲线于A,B两点,且斜率分别为k1,k2.若直线AB过原点,则k1•k2的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.