满分5 > 高中数学试题 >

已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切...

已知椭圆manfen5.com 满分网(a>b>0)的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴为半径的圆与直线manfen5.com 满分网相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于定点Q;
(Ⅲ)在(Ⅱ)的条件下,过点Q的直线与椭圆C交于M,N两点,求manfen5.com 满分网的取值范围.
(Ⅰ)由题意知,能够导出.再由可以导出椭圆C的方程为. (Ⅱ)由题意知直线PB的斜率存在,设直线PB的方程为y=k(x-4).由得(4k2+3)x2-32k2x+64k2-12=0,再由根与系数的关系证明直线AE与x轴相交于定点Q(1,0). (Ⅲ)分MN的斜率存在与不存在两种情况讨论,当过点Q直线MN的斜率存在时,设直线MN的方程为y=m(x-1),且M(xM,yM),N(xN,yN)在椭圆C上.由得(4m2+3)x2-8m2x+4m2-12=0.再由根据判别式和根与系数的关系求解的取值范围;当过点Q直线MN的斜率不存在时,其方程为x=1,易得M、N的坐标,进而可得的取值范围,综合可得答案. 【解析】 (Ⅰ)由题意知, 所以. 即. 又因为, 所以a2=4,b2=3. 故椭圆C的方程为. (Ⅱ)由题意知直线PB的斜率存在,设直线PB的方程为y=k(x-4). 由得(4k2+3)x2-32k2x+64k2-12=0.① 设点B(x1,y1),E(x2,y2),则A(x1,-y1). 直线AE的方程为. 令y=0,得. 将y1=k(x1-4),y2=k(x2-4)代入, 整理,得.② 由①得,代入② 整理,得x=1. 所以直线AE与x轴相交于定点Q(1,0). (Ⅲ)当过点Q直线MN的斜率存在时,设直线MN的方程为y=m(x-1),且M(xM,yM),N(xN,yN)在椭圆C上. 由得(4m2+3)x2-8m2x+4m2-12=0. 易知△>0. 所以,,. 则=. 因为m2≥0,所以. 所以. 当过点Q直线MN的斜率不存在时,其方程为x=1. 解得,N(1,)或M(1,)、N(1,-). 此时. 所以的取值范围是.
复制答案
考点分析:
相关试题推荐
已知平面上的动点P(x,y)及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是 k1,k2manfen5.com 满分网
(1)求动点P的轨迹C的方程;
(2)设直线l:y=kx+m与曲线C交于不同的两点M,N.
①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值
②若直线BM,BN的斜率都存在并满足manfen5.com 满分网,证明直线l过定点,并求出这个定点.
查看答案
已知椭圆C的中心在原点,焦点在x轴上,长轴长是短轴长的manfen5.com 满分网倍,且椭圆C经过点Mmanfen5.com 满分网
(1)求椭圆C的标准方程;
(2)过圆O:manfen5.com 满分网上的任意一点作圆的一条切线l与椭圆C交于A、B两点.求证:manfen5.com 满分网为定值.
查看答案
设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网,(a>b>0)上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),且manfen5.com 满分网,若椭圆的离心率manfen5.com 满分网,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案
椭圆的两焦点坐标分别为manfen5.com 满分网manfen5.com 满分网,且椭圆过点manfen5.com 满分网
(1)求椭圆方程;
(2)过点manfen5.com 满分网作不与y轴垂直的直线l交该椭圆于M、N两点,A为椭圆的左顶点,试判断∠MAN的大小是否为定值,并说明理由.
查看答案
已知直线l:y=x+manfen5.com 满分网,圆O:x2+y2=5,椭圆E:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率e=manfen5.com 满分网,直线l被圆O截得的弦长与椭圆的短轴长相等.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证两切线斜率之积为定值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.