满分5 > 高中数学试题 >

椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于...

manfen5.com 满分网椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q.
(Ⅰ)当|CD|=manfen5.com 满分网时,求直线l的方程;
(Ⅱ)当点P异于A、B两点时,求证:manfen5.com 满分网为定值.
(Ⅰ)根据椭圆有两顶点A(-1,0)、B(1,0),焦点F(0,1),可知椭圆的焦点在y轴上,b=1,c=1,,可以求得椭圆的方程,联立直线和椭圆方程,消去y得到关于x的一元二次方程,利用韦达定理和弦长公式可求出直线l的方程; (Ⅱ)根据过其焦点F(0,1)的直线l的方程可求出点P的坐标,该直线与椭圆交于C、D两点,和直线AC与直线BD交于点Q,求出直线AC与直线BD的方程,解该方程组即可求得点Q的坐标,代入即可证明结论. 【解析】 (Ⅰ)∵椭圆的焦点在y轴上,设椭圆的标准方程为(a>b>0), 由已知得b=1,c=1,所以a=, 椭圆的方程为, 当直线l与x轴垂直时与题意不符, 设直线l的方程为y=kx+1,C(x1,y1),D(x2,y2), 将直线l的方程代入椭圆的方程化简得(k2+2)x2+2kx-1=0, 则x1+x2=-,x1•x2=-, ∴|CD|== ==, 解得k=. ∴直线l的方程为y=x+1; (Ⅱ)证明:当直线l与x轴垂直时与题意不符, 设直线l的方程为y=kx+1,(k≠0,k≠±1),C(x1,y1),D(x2,y2), ∴P点的坐标为(-,0), 由(Ⅰ)知x1+x2=-,x1•x2=-, 且直线AC的方程为y=,且直线BD的方程为y=, 将两直线联立,消去y得, ∵-1<x1,x2<1,∴与异号, = =, y1y2=k2x1x2+k(x1+x2)+1==-, ∴与y1y2异号,与同号, ∴=,解得x=-k, 故Q点坐标为(-k,y), =(-,0)•(-k,y)=1, 故为定值.
复制答案
考点分析:
相关试题推荐
已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线manfen5.com 满分网的焦点,离心率等于manfen5.com 满分网
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若manfen5.com 满分网manfen5.com 满分网,求证:λ12为定值.
查看答案
已知椭圆Ω的离心率为manfen5.com 满分网,它的一个焦点和抛物线y2=-4x的焦点重合.
(1)求椭圆Ω的方程;
(2)若椭圆manfen5.com 满分网上过点(x,y)的切线方程为manfen5.com 满分网
①过直线l:x=4上点M引椭圆Ω的两条切线,切点分别为A,B,求证:直线AB恒过定点C;
②是否存在实数λ使得|AC|+|BC|=λ•|AC|•|BC|,若存在,求出A的值;若不存在,说明理由.
查看答案
已知椭圆manfen5.com 满分网(a>b>0)的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴为半径的圆与直线manfen5.com 满分网相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于定点Q;
(Ⅲ)在(Ⅱ)的条件下,过点Q的直线与椭圆C交于M,N两点,求manfen5.com 满分网的取值范围.
查看答案
已知平面上的动点P(x,y)及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是 k1,k2manfen5.com 满分网
(1)求动点P的轨迹C的方程;
(2)设直线l:y=kx+m与曲线C交于不同的两点M,N.
①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值
②若直线BM,BN的斜率都存在并满足manfen5.com 满分网,证明直线l过定点,并求出这个定点.
查看答案
已知椭圆C的中心在原点,焦点在x轴上,长轴长是短轴长的manfen5.com 满分网倍,且椭圆C经过点Mmanfen5.com 满分网
(1)求椭圆C的标准方程;
(2)过圆O:manfen5.com 满分网上的任意一点作圆的一条切线l与椭圆C交于A、B两点.求证:manfen5.com 满分网为定值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.