由题意函数f(x)=x+x3是奇函数也是增函数,故可由此性质对f(x1)+f(x2)+f(x3)的值进行探究,选出正确选项
【解析】
由题意函数f(x)=x+x3是奇函数也是增函数
又x1,x2,x3∈R,x1+x2<0,x2+x3<0,x3+x1<0
∴x1<-x2,x2<-x3,x3<-x1,
故有f(x1)<f(-x2)=-f(x2),f(x2)<f(-x3)=-f(x3),f(x3)<f(x1)=-f(x1),
三式相加得f(x1)+f(x2)+f(x3)<-[f(x1)+f(x2)+f(x3)],即f(x1)+f(x2)+f(x3)<0
故选B