满分5 > 高中数学试题 >

已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤...

已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤f(x).
(Ⅰ)证明:当x≥0时,f(x)≤(x+c)2
(Ⅱ)若对满足题设条件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
(Ⅰ)f′(x)≤f(x)转化为x2+(b-2)x+c-b≥0恒成立,找到b和c之间的关系,再对f(x)和(x+c)2作差整理成关于b和c的表达式即可. (Ⅱ)对c≥|b|分c>|b|和c=|b|两种情况分别求出对应的M的取值范围,再综合求M的最小值即可. 【解析】 (Ⅰ)易知f'(x)=2x+b.由题设,对任意的x∈R,2x+b≤x2+bx+c, 即x2+(b-2)x+c-b≥0恒成立,所以(b-2)2-4(c-b)≤0,从而. 于是c≥1,且,因此2c-b=c+(c-b)>0. 故当x≥0时,有(x+c)2-f(x)=(2c-b)x+c(c-1)≥0. 即当x≥0时,f(x)≤(x+c)2. (Ⅱ)由(Ⅰ)得,c≥|b| 当c>|b|时,有M≥==, 令t=则-1<t<1,=2-, 而函数g(t)=2-(-1<t<1)的值域(-∞,) 因此,当c≥|b|时M的取值集合为[,+∞). 当c=|b|时,由(Ⅰ)知,b=±2,c=2. 此时f(c)-f(b)=-8或0,c2-b2=0, 从而恒成立. 综上所述,M的最小值为
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网,g(x)=manfen5.com 满分网
(1)当t=8时,求函数y=f(x)-g(x)的单调区间:
(2)求证:当t>0时f(x)≥g(x)对任意正实数x都成立;
(3)若存在正实数x,使得g(x)≤4x-manfen5.com 满分网对任意正实数t都成立,请直接写出满足这样条件的-个x的值(不必给出求解过程).
查看答案
设 1=a1≤a2≤…≤a7,其中a1,a3,a5,a7 成公比为q的等比数列,a2,a4,a6 成公差为1的等差数列,则q的最小值是    查看答案
已知数列{an},{bn}满足a1=1,a2=2,b1=2,且对任意的正整数i,j,k,l,当i+j=k+l时,都有ai+bj=ak+bl,则manfen5.com 满分网的值是    查看答案
等比数列{an}的公比为q,前n项的积为Tn,并且满足a1>1,a2009•a2010-1>0,(a2009-1)(a2010-1)<0,给出下列结论①0<q<1;②a2009•a2011<1;③T2010是Tn中最大的;④使得Tn>1成立的最大的自然数是4018.其中正确结论的序号为     .(将你认为正确的全部填上) 查看答案
设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.