满分5 > 高中数学试题 >

设x,y∈R,、,为直角坐标平面内x轴,y轴正方向上的单位向量,若向量=x+(y...

设x,y∈R,manfen5.com 满分网manfen5.com 满分网,为直角坐标平面内x轴,y轴正方向上的单位向量,若向量manfen5.com 满分网=xmanfen5.com 满分网+(y+2)manfen5.com 满分网manfen5.com 满分网=xmanfen5.com 满分网+(y-2)manfen5.com 满分网,且|manfen5.com 满分网|+|manfen5.com 满分网|=8.
(1)求点M(x,y)的轨迹C的方程;
(2)过点(0,3)作直线l与曲线C交于A、B两点.设manfen5.com 满分网=manfen5.com 满分网+manfen5.com 满分网,是否存在这样的直线l,使得四边形OAPB为菱形?若存在,求出直线l的方程;若不存在,请说明理由.
(1)根据向量模的公式以及坐标系内两点间的距离公式,可得动点M(x,y)到定点F1(0,-2)、F2(0,2)的距离之和等于8(常数),由此结合椭圆的定义得到M的轨迹是以F1、F2为焦点的椭圆,可得轨迹C的方程; (2)设A(x1,y1),B(x2,y2),直线l方程为y=kx+3,将l方程与椭圆C消去y得关于x的方程,得关于x的一元二次方程,利用根与系数的关系及直线l方程得x1+x2=且y1+y2=.再根据平行四边形OAPB为菱形,得到||=||,利用向量模的公式化简结合前面的等式可得关于k的方程,解之得k=0.由此可得存在直线y=3使得四边形OAPB为菱形. 【解析】 (1)∵=x+(y+2),=x+(y-2) ∴||=,||= 设F1(0,-2),F2(0,2),动点M(x,y),可得||、||分别表示点M到F1、F2的距离. ∵||+||=8,即M到F1、F2的距离之和等于8, ∴点M(x,y)的轨迹C是以F1(0,-2),F2(0,2)为焦点,长轴长为8的椭圆, 可得a=4,c=2,b2=a2-c2=12, 可得椭圆方程为,即为点M(x,y)的轨迹C的方程; (2)由于直线l过点(0,3),故 ①当直线l为y轴时,A、B为椭圆的顶点,可得=+= 此时点P与原点重合,不符合题意; ②当直线l与x轴不垂直时,设方程为y=kx+3,A(x1,y1),B(x2,y2) 由消去y,得(4+3k2)x2+18kx-21=0 此时△=(18k)2-4(4+3k2)•(-21)=576k2+336>0恒成立 x1+x2=,代入直线得y1+y2=k(x1+x2)+6= ∵=+,∴四边形OAPB是平行四边形, 若四边形OAPB是菱形,则||=|| ∵=(x1,y1),=(x2,y2) ∴+=+,化简得(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0  可得l的斜率k==-=-=- 解之得k=0,因此存在直线y=3,使得四边形OAPB为菱形.
复制答案
考点分析:
相关试题推荐
已知抛物线y2=2px经过点M(2,-manfen5.com 满分网),椭圆manfen5.com 满分网=1的右焦点恰为抛物线的焦点,且椭圆的离心率为manfen5.com 满分网
(1)求抛物线与椭圆的方程;
(2)若P为椭圆上一个动点,Q为过点P且垂直于x轴的直线上一点,manfen5.com 满分网=λ(λ≠0),试求点Q的轨迹.
查看答案
在平面直角坐标系xOy中,点P(x,y)为动点,已知点A(manfen5.com 满分网,0),B(-manfen5.com 满分网,0),直线PA与PB的斜率之积为定值-manfen5.com 满分网
(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)若F(1,0),过点F的直线l交轨迹E于M、N两点,以MN为对角线的正方形的第三个顶点恰在y轴上,求直线l的方程.
查看答案
已知椭圆C:manfen5.com 满分网=1(a>b>0),直线y=manfen5.com 满分网与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1、F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2
(1)求椭圆C的方程;
(2)若直线l:y=kx+m(k≠0)与椭圆C交于不同的两点A、B,且线段AB的垂直平分线l′过定点Q(manfen5.com 满分网,0),求实数k的取值范围.
查看答案
已知函数f(x)=elnx,g(x)=e-1•f(x)-(x+1).(e=2.718…)
(1)求函数g(x)的极大值;
(2 )求证:manfen5.com 满分网
(3)对于函数f(x)与h(x)定义域上的任意实数x,若存在常数k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的“分界线”.设函数manfen5.com 满分网,试探究函数f(x)与h(x)是否存在“分界线”?若存在,请加以证明,并求出k,b的值;若不存在,请说明理由.
查看答案
manfen5.com 满分网已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数y=h′(x)的图象如图,f(x)=6lnx+h(x).
(1)求函数f(x)在x=3处的切线斜率;
(2)若函数f(x)在区间manfen5.com 满分网上是单调函数,求实数m的取值范围;
(3)若函数y=-x,x∈(0,6]的图象总在函数y=f(x)图象的上方,求c的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.