满分5 > 高中数学试题 >

已知中心在原点O,焦点在x轴上的椭圆C的离心率为,点A,B分别是椭圆C的长轴、短...

已知中心在原点O,焦点在x轴上的椭圆C的离心率为manfen5.com 满分网,点A,B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为manfen5.com 满分网
(1)求椭圆C的标准方程;
(2)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,求manfen5.com 满分网的取值范围.

manfen5.com 满分网
(1)先利用离心率为得到关于a,b,c之间的关系,再结合点O到直线AB的距离为,即可求出a,b,c,进而得到椭圆C的标准方程; (2)先利用EP⊥EQ把所求问题转化为,再利用点P在抛物线上,利用抛物线上的点的范围限制即可求出的取值范围. 【解析】 (1)由离心率,得∴a=2b① ∵原点O到直线AB的距离为 ∴②, 将①代入②,得b2=9,∴a2=36 则椭圆C的标准方程为 (2)∵EP⊥EQ∴ ∴ 设P(x,y),则,即 ∴ ∵-6≤x≤6,∴ 则的取值范围为[6,81].
复制答案
考点分析:
相关试题推荐
如图所示,已知椭圆C:manfen5.com 满分网=1(a>1)的离心率为e,点F为其下焦点,点A为其上顶点,过F的直线l:y=mx-c试用a表示m2
(2)求e的最大值;
(3)若e∈(manfen5.com 满分网manfen5.com 满分网),求m的取值范围.

manfen5.com 满分网 查看答案
如图,椭圆C1manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,x轴被曲线C2:y=x2-b截得的线段长等于C1的长半轴长.
(Ⅰ)求C1,C2的方程;
(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交与D,E.
(i)证明:MD⊥ME;
(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得manfen5.com 满分网=manfen5.com 满分网?请说明理由.

manfen5.com 满分网 查看答案
已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点manfen5.com 满分网,且点Q在x轴上的射影恰为该双曲线的一个焦点F1
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆manfen5.com 满分网的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则manfen5.com 满分网为定值,且定值是manfen5.com 满分网”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).
查看答案
设x,y∈R,manfen5.com 满分网manfen5.com 满分网,为直角坐标平面内x轴,y轴正方向上的单位向量,若向量manfen5.com 满分网=xmanfen5.com 满分网+(y+2)manfen5.com 满分网manfen5.com 满分网=xmanfen5.com 满分网+(y-2)manfen5.com 满分网,且|manfen5.com 满分网|+|manfen5.com 满分网|=8.
(1)求点M(x,y)的轨迹C的方程;
(2)过点(0,3)作直线l与曲线C交于A、B两点.设manfen5.com 满分网=manfen5.com 满分网+manfen5.com 满分网,是否存在这样的直线l,使得四边形OAPB为菱形?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案
已知抛物线y2=2px经过点M(2,-manfen5.com 满分网),椭圆manfen5.com 满分网=1的右焦点恰为抛物线的焦点,且椭圆的离心率为manfen5.com 满分网
(1)求抛物线与椭圆的方程;
(2)若P为椭圆上一个动点,Q为过点P且垂直于x轴的直线上一点,manfen5.com 满分网=λ(λ≠0),试求点Q的轨迹.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.