已知点A、B分别是椭圆
=1(a>b>0)长轴的左、右端点,点C是椭圆短轴的一个端点,且离心率e=
,S
△ABC=
(1)求椭圆方程;
(2)设直线l经过椭圆的右焦点,且与椭圆相交于P、Q两点,求线段PQ的中点到原点的距离等于
时的直线方程.
考点分析:
相关试题推荐
设抛物线C:x
2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为
;求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
查看答案
已知中心在原点O,焦点在x轴上的椭圆C的离心率为
,点A,B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为
.
(1)求椭圆C的标准方程;
(2)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,求
的取值范围.
查看答案
如图所示,已知椭圆C:
=1(a>1)的离心率为e,点F为其下焦点,点A为其上顶点,过F的直线l:y=mx-c试用a表示m
2;
(2)求e的最大值;
(3)若e∈(
,
),求m的取值范围.
查看答案
如图,椭圆C
1:
=1(a>b>0)的离心率为
,x轴被曲线C
2:y=x
2-b截得的线段长等于C
1的长半轴长.
(Ⅰ)求C
1,C
2的方程;
(Ⅱ)设C
2与y轴的交点为M,过坐标原点O的直线l与C
2相交于点A、B,直线MA,MB分别与C
1相交与D,E.
(i)证明:MD⊥ME;
(ii)记△MAB,△MDE的面积分别是S
1,S
2.问:是否存在直线l,使得
=
?请说明理由.
查看答案
已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点
,且点Q在x轴上的射影恰为该双曲线的一个焦点F
1(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆
的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
为定值,且定值是
”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).
查看答案