满分5 > 高中数学试题 >

已知点A、B分别是椭圆=1(a>b>0)长轴的左、右端点,点C是椭圆短轴的一个端...

已知点A、B分别是椭圆manfen5.com 满分网=1(a>b>0)长轴的左、右端点,点C是椭圆短轴的一个端点,且离心率e=manfen5.com 满分网,S△ABC=manfen5.com 满分网
(1)求椭圆方程;
(2)设直线l经过椭圆的右焦点,且与椭圆相交于P、Q两点,求线段PQ的中点到原点的距离等于manfen5.com 满分网时的直线方程.
(1)利用椭圆的离心率e=,S△ABC=,建立方程组,求出几何量,即可得出椭圆的方程; (2)分类讨论,直线方程与椭圆方程联立,利用OP⊥OQ,结合韦达定理,即可得到结论. 【解析】 (1)∵椭圆的离心率e=,S△ABC= ∴ ∴ ∴所求椭圆的方程为; (2)当直线l的斜率不存在时,l的方程为x=,代入椭圆方程,可得,∴|PQ|= 而线段PQ的中点到原点的距离等于,不合题意; 当直线l的斜率存在时,l的方程为y=k(x-),则OP⊥OQ 直线方程与椭圆方程联立,可得(1+3k2)x2-x+6k2-3=0. 设P(x1,y1)、Q(x2,y2),则x1+x2=,x1x2= ∴x1x2+y1y2==0 ∴k= ∴直线l的方程为y=(x-)或y=-(x-).
复制答案
考点分析:
相关试题推荐
设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为manfen5.com 满分网;求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
查看答案
已知中心在原点O,焦点在x轴上的椭圆C的离心率为manfen5.com 满分网,点A,B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为manfen5.com 满分网
(1)求椭圆C的标准方程;
(2)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,求manfen5.com 满分网的取值范围.

manfen5.com 满分网 查看答案
如图所示,已知椭圆C:manfen5.com 满分网=1(a>1)的离心率为e,点F为其下焦点,点A为其上顶点,过F的直线l:y=mx-c试用a表示m2
(2)求e的最大值;
(3)若e∈(manfen5.com 满分网manfen5.com 满分网),求m的取值范围.

manfen5.com 满分网 查看答案
如图,椭圆C1manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,x轴被曲线C2:y=x2-b截得的线段长等于C1的长半轴长.
(Ⅰ)求C1,C2的方程;
(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交与D,E.
(i)证明:MD⊥ME;
(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得manfen5.com 满分网=manfen5.com 满分网?请说明理由.

manfen5.com 满分网 查看答案
已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点manfen5.com 满分网,且点Q在x轴上的射影恰为该双曲线的一个焦点F1
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆manfen5.com 满分网的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则manfen5.com 满分网为定值,且定值是manfen5.com 满分网”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.