满分5 > 高中数学试题 >

设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有恒成立,则不等式x...

设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有manfen5.com 满分网恒成立,则不等式x2f(x)>0的解集是( )
A.(-2,0)∪(2,+∞)
B.(-2,0)∪(0,2)
C.(-∞,-2)∪(2,+∞)
D.(-∞,-2)∪(0,2)
首先根据商函数求导法则,把化为[]′<0;然后利用导函数的正负性,可判断函数y=在(0,+∞)内单调递减;再由f(2)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(-∞,0)内的正负性.则x2f(x)>0⇔f(x)>0的解集即可求得. 【解析】 因为当x>0时,有恒成立,即[]′<0恒成立, 所以在(0,+∞)内单调递减. 因为f(2)=0, 所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0. 又因为f(x)是定义在R上的奇函数, 所以在(-∞,-2)内恒有f(x)>0;在(-2,0)内恒有f(x)<0. 又不等式x2f(x)>0的解集,即不等式f(x)>0的解集. 所以答案为(-∞,-2)∪(0,2). 故选D.
复制答案
考点分析:
相关试题推荐
已知点A,B的坐标分别是(0,-1),(0,1),直线AM,BM相交于点M,且它们的斜率之积-manfen5.com 满分网
(1)求点M轨迹C的方程;
(2)若过点D(2,0)的直线l与(1)中的轨迹C交于不同的两点D、F(E在D、F之间),试求△ODE与△ODF面积之比的取值范围(O为坐标原点).
查看答案
如图所示,在Rt△ABC中,∠CAB=90°,AB=2,AC=manfen5.com 满分网.一曲线E过点C,动点P在曲线E上运动,且保持|PA|+|PB|的值不变,直线l经过A与曲线E交于M,N两点.
(1)建立适当的直角坐标系,求曲线E的方程;
(2)设直线l的斜率为k,若∠MBN为钝角,求k的取值范围.

manfen5.com 满分网 查看答案
已知点A、B分别是椭圆manfen5.com 满分网=1(a>b>0)长轴的左、右端点,点C是椭圆短轴的一个端点,且离心率e=manfen5.com 满分网,S△ABC=manfen5.com 满分网
(1)求椭圆方程;
(2)设直线l经过椭圆的右焦点,且与椭圆相交于P、Q两点,求线段PQ的中点到原点的距离等于manfen5.com 满分网时的直线方程.
查看答案
设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为manfen5.com 满分网;求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
查看答案
已知中心在原点O,焦点在x轴上的椭圆C的离心率为manfen5.com 满分网,点A,B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为manfen5.com 满分网
(1)求椭圆C的标准方程;
(2)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,求manfen5.com 满分网的取值范围.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.