满分5 > 高中数学试题 >

如图,在五面体EF-ABCD中,四边形ADEF是正方形,FA⊥平面ABCD,BC...

如图,在五面体EF-ABCD中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=l,AD=2manfen5.com 满分网,∠BAD=∠CDA=45°.
①求异面直线CE与AF所成角的余弦值;
②证明:CD⊥平面ABF;
③求二面角B-EF-A的正切值.

manfen5.com 满分网
(Ⅰ)先通过平移将两条异面直线平移到同一个起点E,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可. (Ⅱ)根据线面垂直的判定定理可知,只需证直线CD与面ABF中的两条相交直线垂直即可; (Ⅲ)先作出二面角的平面角,再在直角三角形中求出此角即可. (Ⅰ)【解析】 因为四边形ADEF是正方形,所以FA∥ED. 故∠CED为异面直线CE与AF所成的角. 因为FA⊥平面ABCD,所以FA⊥CD.故ED⊥CD. 在Rt△CDE中,CD=1,ED=, CE==3,故cos∠CED==. 所以异面直线CE和AF所成角的余弦值为; (Ⅱ)证明:过点B作BG∥CD,交AD于点G, 则∠BGA=∠CDA=45°.由∠BAD=45°,可得BG⊥AB, 从而CD⊥AB,又CD⊥FA,FA∩AB=A,所以CD⊥平面ABF; (Ⅲ)【解析】 由(Ⅱ)及已知,可得AG=,即G为AD的中点. 取EF的中点N,连接GN,则GN⊥EF, 因为BC∥AD,所以BC∥EF. 过点N作NM⊥EF,交BC于M, 则∠GNM为二面角B-EF-A的平面角. 连接GM,可得AD⊥平面GNM,故AD⊥GM. 从而BC⊥GM.由已知,可得GM=. 由NG∥FA,FA⊥GM,得NG⊥GM. 在Rt△NGM中,tan, 所以二面角B-EF-A的正切值为.
复制答案
考点分析:
相关试题推荐
设△ABC的内角A、B、C的对边长分别为a、b、c,且3b2+3c2-3a2=4manfen5.com 满分网bc.
(Ⅰ)求sinA的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
对于任意的两个实数对(a,b)(c,d),规定:(a,b)=(c,d),当且仅当a=c,b=d;
定义运算“⊗”为:(a,b)⊗(c,d)=(ac-bd,bc+ad),
运算“⊕”为:(a,b)⊕(c,d)=(a+c,b+d).
设p,q∈R,若(1,2)⊗(p,q)=(5,0),则(1,2)⊕(p,q)=    查看答案
某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有    种.(用数字作答) 查看答案
manfen5.com 满分网如图所示,程序框图(算法流程图)的输出结果是    查看答案
如果实数x、y满足manfen5.com 满分网的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.