确定椭圆焦点F1(-1,0),F2(1,0)恰为两圆(x+1)2+y2=1和(x-1)2+y2=1的圆心,利用椭圆的定义,即可得出结论.
【解析】
∵椭圆+=1中,c2=4-3=1,
∴椭圆+=1两焦点F1(-1,0),F2(1,0)恰为两圆(x+1)2+y2=1和(x-1)2+y2=1的圆心,
,准线x=±=±4,
过P点作x轴平行线,分别交两准线于A,B两点,
连接PF1,PF2,并延长,分别交两圆于Q′,R′,
则|PQ|+|PR|≤|PQ′|+|PR′|=|PF1|+1+|PF2|+1=e|PA|+e|PB|+2=e|AB|+2
==6.
故答案为:6