登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
设函数f(x)=x2+bln(x+1),其中b≠0. (Ⅰ)当时,判断函数f(x...
设函数f(x)=x
2
+bln(x+1),其中b≠0.
(Ⅰ)当
时,判断函数f(x)在定义域上的单调性;
(Ⅱ)求函数f(x)的极值点;
(Ⅲ)证明对任意的正整数n,不等式
都成立.
(Ⅰ)先求函数的定义域,然后求出函数f(x)的导函数,利用二次函数的性质判定导函数的符号,从而确定函数f(x)在定义域上的单调性; (Ⅱ)需要分类讨论,由(Ⅰ)可知分类标准为b≥,0<b<,b≤0或f'(x)<0.参数取某些特定值时,可只管作出判断,单列为一类;不能作出直观判断的,再分为一类,用通法解决,另外要注意由f'(x)=0求得的根不一定就是极值点,需要判断在该点两侧的异号性后才能称为“极值点”. (Ⅲ)先构造函数h(x)=x3-x2+ln(x+1),然后研究h(x)在[0,+∞)上的单调性,求出函数h(x)的最小值,从而得到ln(x+1)>x2-x3,最后令,即可证得结论. 【解析】 (Ⅰ)函数f(x)=x2+bln(x+1)的定义域在(-1,+∞) 令g(x)=2x2+2x+b,则g(x)在上递增,在上递减, g(x)=2x2+2x+b>0在(-1,+∞)上恒成立, 所以f'(x)>0即当,函数f(x)在定义域(-1,+∞)上单调递增. (Ⅱ)(1)由(Ⅰ)知当时函数f(x)无极值点 (2)当时,, ∴, ∴时,函数f(x)在(-1,+∞)上无极值点 (3)当时,解f'(x)=0得两个不同解 当b<0时,, ∴x1∈(-∞,-1),x2∈(-1,+∞),此时f(x)在(-1,+∞)上有唯一的极小值点 当时,x1,x2∈(-1,+∞)f'(x)在(-1,x1),(x2,+∞)都大于0, f'(x)在(x1,x2)上小于0,此时f(x)有一个极大值点和一个极小值点 综上可知,b<0,时,f(x)在(-1,+∞)上有唯一的极小值点 时,f(x)有一个极大值点和一个极小值点 时,函数f(x)在(-1,+∞)上无极值点. (Ⅲ)当b=-1时,f(x)=x2-ln(x+1).令上恒正 ∴h(x)在[0,+∞)上单调递增, 当x∈(0,+∞)时,恒有h(x)>h(0)=0 即当x∈(0,+∞)时,有x3-x2+ln(x+1)>0,ln(x+1)>x2-x3,对任意正整数n,取
复制答案
考点分析:
相关试题推荐
已知椭圆的中心在坐标原点,离心率为
,一个焦点是F(0,1).
(Ⅰ)求椭圆方程;
(Ⅱ)直线l过点F交椭圆于A、B两点,且
,求直线l的方程.
查看答案
已知数列{a
n
}是公差为正的等差数列,其前n项和为S
n
,点(n,S
n
)在抛物线
上;各项都为正数的等比数列{b
n
}满足
.
(1)求数列{a
n
},{b
n
}的通项公式;
(2)记C
n
=a
n
b
n
,求数列{C
n
}的前n项和T
n
.
查看答案
M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.
(I)求男生成绩的中位数及女生成绩的平均值;
(II)如果用分层抽样的方法从“甲部门”人选和“乙部门”人选中共选取5人,再从这5人中选2人,那么至少有一人是“甲部门”人选的概率是多少?
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,PA⊥平面ABCD,E为PB中点,PB=4
.
(I)求证:PD∥面ACE.
(Ⅱ)求三棱锥E-ABC的体积.
查看答案
已知函数f(x)=cos(x-
)-mcosx(m∈R)的图象过p(0,-
),且△ABC内角A、B、C所对应边分别为a、b、c,若f(B)=-
,a=2
,c=
(I)求m的值及f(x)的单调递增区间
(II)求△ABC的面积.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.