满分5 > 高中数学试题 >

已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其...

已知定义在正实数集上的函数f(x)=manfen5.com 满分网x2+2ax,g(x)=3a2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在公共点处的切线相同.
(1)若a=1,求b的值;
(2)用a表示b,并求b的最大值.
(1)设y=f(x)与y=g(x)(x>0)在公共点(x,y)处的切线相同,先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后利用两直线重合列出等式即可求得b值; (2)利用(1)类似的方法,利用a的表达式来表示b,然后利用导数来研究b的最大值,研究此函数的最值问题,先求出函数的极值,结合函数的单调性,最后确定出最大值与最小值即得. 【解析】 (1)设y=f(x)与y=g(x)(x>0)在公共点(x,y)处的切线相同. f′(x)=x+2,g′(x)=, 由题意知f(x)=g(x),f′(x)=g′(x), ∴, 由x+2=得x=1或x=-3(舍去),即有b=. (2)设y=f(x)与y=g(x)(x>0)在公共点(x,y)处的切线相同、 f′(x)=x+2a,g′(x)=, 由题意f(x)=g(x),f′(x)=g′(x), 即由x+2a=得x=a或x=-3a(舍去), 即有b=a2+2a2-3a2lna=a2-3a2lna. 令h(t)=t2-3t2lnt(t>0),则h′(t)=2t(1-3lnt)、 于是当t(1-3lnt)>0,即0<t<时,h′(t)>0; 当t(1-3lnt)<0,即t>时,h′(t)<0. 故h(t)在(0,)为增函数,在(,+∞)为减函数,于是h(t)在(0,+∞)的最大值为h()=, 故b的最大值为.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网在x=1处取得极值2.
(1)求函数f(x)的表达式;
(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
(3)若P(x,y)为manfen5.com 满分网图象上任意一点,直线l与manfen5.com 满分网的图象切于点P,求直线l的斜率k的取值范围.
查看答案
已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.
(Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)当t≠0时,求f(x)的单调区间;
(Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
查看答案
设函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.
(I) 求a、b的值,并写出切线l的方程;
(II)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数m的取值范围.
查看答案
已知函数f(x)=x3-x.
(1)设M(λ,f(λ))是函数f(x)图象上的-点,求点M处的切线方程;
(2)证明:过点N(2,1)可以作曲线,f(x)=x3-x的三条切线.
查看答案
已知函数manfen5.com 满分网manfen5.com 满分网).
(Ⅰ)当曲线y=f(x)在(1,f(1))处的切线与直线l:y=-2x+1平行时,求a的值;
(Ⅱ)求函数f(x)的单调区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.