满分5 > 高中数学试题 >

在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2...

在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作Tn,再令an=lgTn,n≥1.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn
(I)根据在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,我们易得这n+2项的几何平均数为10,故Tn=10n+2,进而根据对数的运算性质我们易计算出数列{an}的通项公式; (II)根据(I)的结论,利用两角差的正切公式,我们易将数列{bn}的每一项拆成的形式,进而得到结论. 【解析】 (I)∵在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列, 又∵这n+2个数的乘积计作Tn, ∴Tn=10n+2 又∵an=lgTn, ∴an=lg10n+2=n+2,n≥1. (II)∵bn=tanan•tanan+1=tan(n+2)•tan(n+3)=, ∴Sn=b1+b2+…+bn=[]+[]+…+[] =
复制答案
考点分析:
相关试题推荐
已知等比数列{an}中,a1=manfen5.com 满分网,公比q=manfen5.com 满分网
(I)Sn为{an}的前n项和,证明:Sn=manfen5.com 满分网
(II)设bn=log3a1+log3a2+…+log3an,求数列{bn}的通项公式.
查看答案
等比数列{an}中,已知a3=8,a6=64.
(1)求数列{an}的通项公式;
(2)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn
查看答案
已知数列{an}为公差不为零的等差数列,a1=1,各项均为正数的等比数列{bn}的第1项、第3项、第5项分别是a1、a3、a21
(1)求数列{an}与{bn}的通项公式;
(2)求数列{anbn}的前n项和Sn
查看答案
设数列{an}的前n项和为Sn,且对任意的n∈N*,都有an>0,manfen5.com 满分网
(Ⅰ)求a1,a2的值;
(Ⅱ)求数列{an}的通项公式.
查看答案
各项均不为零的数列{an},首项a1=1,且对于任意n∈N* 均有6a n+1-a n+1an-2an=0,bn=manfen5.com 满分网
(1)求数列{bn}的通项公式;
(2)数列{an} 的前n项和为Tn,求证Tn<2.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.