满分5 > 高中数学试题 >

设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列是公差...

设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为manfen5.com 满分网
(1)根据等差数列的通项公式,结合已知,列出关于a1、d的方程,求出a1,进而推出sn,再利用an与sn的关系求出an. (2)利用(1)的结论,对Sm+Sn>cSk进行化简,转化为基本不等式问题求解;或求出c的最大值的范围,利用夹逼法求出a的值. 【解析】 (1)由题意知:d>0,=+(n-1)d=+(n-1)d, ∵2a2=a1+a3, ∴3a2=S3,即3(S2-S1)=S3, ∴, 化简,得:, 当n≥2时,an=Sn-Sn-1=n2d2-(n-1)2d2=(2n-1)d2,适合n=1情形. 故所求an=(2n-1)d2 (2)(方法一)Sm+Sn>cSk⇒m2d2+n2d2>c•k2d2⇒m2+n2>c•k2,恒成立. 又m+n=3k且m≠n,, 故,即c的最大值为. (方法二)由及,得d>0,Sn=n2d2. 于是,对满足题设的m,n,k,m≠n,有. 所以c的最大值. 另一方面,任取实数.设k为偶数,令,则m,n,k符合条件,且. 于是,只要9k2+4<2ak2,即当时,. 所以满足条件的,从而. 因此c的最大值为.
复制答案
考点分析:
相关试题推荐
在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作Tn,再令an=lgTn,n≥1.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn
查看答案
已知等比数列{an}中,a1=manfen5.com 满分网,公比q=manfen5.com 满分网
(I)Sn为{an}的前n项和,证明:Sn=manfen5.com 满分网
(II)设bn=log3a1+log3a2+…+log3an,求数列{bn}的通项公式.
查看答案
等比数列{an}中,已知a3=8,a6=64.
(1)求数列{an}的通项公式;
(2)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn
查看答案
已知数列{an}为公差不为零的等差数列,a1=1,各项均为正数的等比数列{bn}的第1项、第3项、第5项分别是a1、a3、a21
(1)求数列{an}与{bn}的通项公式;
(2)求数列{anbn}的前n项和Sn
查看答案
设数列{an}的前n项和为Sn,且对任意的n∈N*,都有an>0,manfen5.com 满分网
(Ⅰ)求a1,a2的值;
(Ⅱ)求数列{an}的通项公式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.