满分5 > 高中数学试题 >

已知数列{an}和{bn}满足:a1=1,a2=2,an>0,(n∈N*),且{...

已知数列{an}和{bn}满足:a1=1,a2=2,an>0,manfen5.com 满分网(n∈N*),且{bn}是以q为公比的等比数列.
(I)证明:an+2=anq2
(II)若cn=a2n-1+2a2n,证明数列{cn}是等比数列;
(III)求和:manfen5.com 满分网
(I)由,代入得,从而得到结论; (II )根据an的递推关系求出a2n-1与a2n,然后代入cn=a2n-1+2a2n可得cn=5q2n-2,从而{cn}是首项为5,以q2为公比的等比数列.、; (III)讨论q是否为1,然后利用等比数列求和公式进行求解即可,最后利用分段形式表示即可. 【解析】 (I)证:由,有,∴an+2=anq2(n∈N*). ( II)证:∵an=qn-2q2,∴a2n-1=a2n-3q2=…=a1q2n-2,a2n=a2n-2q2=…=a2qn-2, ∴cn=a2n-1+2a2n=a1q2n-2+2a2q2n-2=(a1+2a2)q2n-2=5q2n-2. ∴{cn}是首项为5,以q2为公比的等比数列. ( III)由( II)得,,于是==. 当q=1时,=. 当q≠1时,==. 故
复制答案
考点分析:
相关试题推荐
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为manfen5.com 满分网
查看答案
在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作Tn,再令an=lgTn,n≥1.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn
查看答案
已知等比数列{an}中,a1=manfen5.com 满分网,公比q=manfen5.com 满分网
(I)Sn为{an}的前n项和,证明:Sn=manfen5.com 满分网
(II)设bn=log3a1+log3a2+…+log3an,求数列{bn}的通项公式.
查看答案
等比数列{an}中,已知a3=8,a6=64.
(1)求数列{an}的通项公式;
(2)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn
查看答案
已知数列{an}为公差不为零的等差数列,a1=1,各项均为正数的等比数列{bn}的第1项、第3项、第5项分别是a1、a3、a21
(1)求数列{an}与{bn}的通项公式;
(2)求数列{anbn}的前n项和Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.