满分5 > 高中数学试题 >

设 (1)若f(x)在上存在单调递增区间,求a的取值范围. (2)当0<a<2时...

manfen5.com 满分网
(1)若f(x)在manfen5.com 满分网上存在单调递增区间,求a的取值范围.
(2)当0<a<2时,f(x)在[1,4]的最小值为manfen5.com 满分网,求f(x)在该区间上的最大值.
(1)利用函数递增,导函数大于0恒成立,求出导函数的最大值,使最大值大于0. (2)求出导函数的根,判断出根左右两边的导函数的符号,求出端点值的大小,求出最小值,列出方程求出a,求出最大值. 【解析】 (1)f′(x)=-x2+x+2a f(x)在存在单调递增区间 ∴f′(x)>0在有解 ∵f′(x)=-x2+x+2a对称轴为 ∴递减 ∴ 解得. (2)当0<a<2时,△>0; f′(x)=0得到两个根为;(舍) ∵ ∴时,f′(x)>0;时,f′(x)<0 当x=1时,f(1)=2a+;当x=4时,f(4)=8a<f(1) 当x=4时最小∴=解得a=1 所以当x=时最大为
复制答案
考点分析:
相关试题推荐
已知数列{an}和{bn}满足:a1=1,a2=2,an>0,manfen5.com 满分网(n∈N*),且{bn}是以q为公比的等比数列.
(I)证明:an+2=anq2
(II)若cn=a2n-1+2a2n,证明数列{cn}是等比数列;
(III)求和:manfen5.com 满分网
查看答案
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为manfen5.com 满分网
查看答案
在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作Tn,再令an=lgTn,n≥1.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn
查看答案
已知等比数列{an}中,a1=manfen5.com 满分网,公比q=manfen5.com 满分网
(I)Sn为{an}的前n项和,证明:Sn=manfen5.com 满分网
(II)设bn=log3a1+log3a2+…+log3an,求数列{bn}的通项公式.
查看答案
等比数列{an}中,已知a3=8,a6=64.
(1)求数列{an}的通项公式;
(2)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.