满分5 > 高中数学试题 >

设f(x)=x3+mx2+nx. (1)如果g(x)=f′(x)-2x-3在x=...

设f(x)=manfen5.com 满分网x3+mx2+nx.
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N+),f(x)在单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a)
(1)先由导数知识求出g(x),然后利用配方法把二次函数g(x)表示成顶点式,再根据g(x) 在x=-2处取得最小值-5,可列方程组求得m、n的值,则问题解决. (2)首先求出f(x)的导函数f′(x)=x2+2mx+n(二次函数),然后根据f(x)的单调递减区间的长度是正整数,可判断函数f′(x)=x2+2mx+n有两个不同的零点x1、x2,且利用根与系数的关系能表示出|x1-x2|=2,再由“此长度是正整数”且“m+n<10(m,n∈N+)”为突破口,对m、n进行分类讨论,最后找到满足要求的m、n. 【解析】 (1)由题意得g(x)=f′(x)-2x-3=x2+2mx+n-2x-3=(x+m-1)2+(n-3)-(m-1)2, 又g(x) 在x=-2处取得最小值-5, 所以,解得m=3,n=2. 所以f(x)=x3+3x2+2x.  (2)因为f′(x)=x2+2mx+n且f(x)的单调递减区间的长度是正整数, 所以方程f′(x)=0,即x2+2mx+n=0必有两不等实根, 则△=4m2-4n>0,即m2>n. 不妨设方程f′(x)=0的两根分别为x1、x2,则|x1-x2|==2且为正整数. 又因为m+n<10(m,n∈N+),所以m≥2时才能有满足条件的m、n. 当m=2时,只有n=3符合要求; 当m=3时,只有n=5符合要求; 当m≥4时,没有符合要求的n. 故只有m=2,n=3或m=3,n=5满足上述要求.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网.
(1)确定y=f(x)在(0,+∞)上的单调性;
(2)设h(x)=x•f(x)-x-ax3在(0,2)上有极值,求a的取值范围.
查看答案
已知函数f(x)=lnx-ax+manfen5.com 满分网-1(a∈R).
(1)当a=-1时,求函数的单调区间;
(2)当0≤a<manfen5.com 满分网时,讨论f(x)的单调性.
查看答案
manfen5.com 满分网
(1)若f(x)在manfen5.com 满分网上存在单调递增区间,求a的取值范围.
(2)当0<a<2时,f(x)在[1,4]的最小值为manfen5.com 满分网,求f(x)在该区间上的最大值.
查看答案
已知数列{an}和{bn}满足:a1=1,a2=2,an>0,manfen5.com 满分网(n∈N*),且{bn}是以q为公比的等比数列.
(I)证明:an+2=anq2
(II)若cn=a2n-1+2a2n,证明数列{cn}是等比数列;
(III)求和:manfen5.com 满分网
查看答案
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.