满分5 > 高中数学试题 >

设椭圆E:(a>b>0)过M(2,),N(,1)两点,O为坐标原点, (1)求椭...

设椭圆E:manfen5.com 满分网(a>b>0)过M(2,manfen5.com 满分网),N(manfen5.com 满分网,1)两点,O为坐标原点,
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使该圆的任意一条切线与椭圆E恒有两个交点A、B,且manfen5.com 满分网?若存在,写出该圆的方程,并求|AB|取值范围;若不存在,说明理由.
(1)由椭圆E过M、N,知,由此能求出椭圆E. (2)假设存在这样的圆,设该圆的切线为y=kx+m,由,知(1+2k2)x2+4kmx+2m2-8=0,再由根的判别式和韦达定理能求出|AB|取值范围. 【解析】 (1)椭圆E过M、N ∴∴∴椭圆E:(5分) (2)假设存在这样的圆,设该圆的切线为y=kx+m,由 ∴(1+2k2)x2+4kmx+2m2-8=0 当△=16k2m2-4(1+2k2)(2m2-8)=8(8k2-m2+4)>0,要使 ∴x1x2+y1y2=0∴ ∴3m2-8k2-8=0∴ 又 8k2-m2+4>0∴∴∴ 又y=kx+m与圆心在原点的圆相切 ∴,即, ∴所求圆: 当切线斜率不存在时,切线为,与椭圆交于(,) 或(,),满足 综上:存在这样的圆满足条件 (9分) ∵ 当k≠0时, ∴(当时取等) 当k=0时, 当k不存时, ∴(12分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱锥D-BCM的体积.
查看答案
设函数f(x)=ax+manfen5.com 满分网(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.
查看答案
△ABC的三个内角A,B,C所对的边分别为a,b,c,向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(1)求A的大小;
(2)现在给出下列三个条件:①a=1;②manfen5.com 满分网;③B=45°,试从中选择两个条件以确定△ABC,求出所确定的△ABC的面积.
查看答案
manfen5.com 满分网用一个边长为manfen5.com 满分网的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,半径为1的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为    查看答案
manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.