选修4-5:不等式选讲
设函数f(x)=|x-a|+3x,其中a>0.
(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集
(Ⅱ)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.
考点分析:
相关试题推荐
选修4-4:坐标系与参数方程
在极坐标系中,O为极点,半径为2的圆C的圆心的极坐标为
.
(1)求圆C的极坐标方程;
(2)P是圆C上一动点,点Q满足
,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.
查看答案
选修4-1:几何证明选讲
如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x
2-14x+mn=0的两个根.
(Ⅰ)证明:C,B,D,E四点共圆;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.
查看答案
已知函数f(x)=(a-3b+9)ln(x+3)+
+(b-3)x.
(1)当a>0且a≠1,f'(1)=0时,试用含a的式子表示b,并讨论f(x)的单调区间;
(2)若f'(x)有零点,f'(3)≤
,且对函数定义域内一切满足|x|≥2的实数x有f'(x)≥0.
①求f(x)的表达式;
②当x∈(-3,2)时,求函数y=f(x)的图象与函数y=f'(x)的图象的交点坐标.
查看答案
设椭圆E:
(a>b>0)过M(2,
),N(
,1)两点,O为坐标原点,
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使该圆的任意一条切线与椭圆E恒有两个交点A、B,且
?若存在,写出该圆的方程,并求|AB|取值范围;若不存在,说明理由.
查看答案
如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱锥D-BCM的体积.
查看答案