满分5 > 高中数学试题 >

设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(...

设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=manfen5.com 满分网,求数列{cn}的前n项和Tn
(I)由已知利用递推公式可得an,代入分别可求数列bn的首项b1,公比q,从而可求bn (II)由(I)可得cn=(2n-1)•4n-1,利用乘“公比”错位相减求和. 【解析】 (1):当n=1时,a1=S1=2;当n≥2时,an=Sn-Sn-1=2n2-2(n-1)2=4n-2, 故{an}的通项公式为an=4n-2,即{an}是a1=2,公差d=4的等差数列. 设{bn}的通项公式为q,则b1qd=b1,d=4,∴q=. 故bn=b1qn-1=2×,即{bn}的通项公式为bn=. (II)∵cn===(2n-1)4n-1, Tn=c1+c2+…+cn Tn=1+3×41+5×42+…+(2n-1)4n-1 4Tn=1×4+3×42+5×43+…+(2n-3)4n-1+(2n-1)4n 两式相减得,3Tn=-1-2(41+42+43+…+4n-1)+(2n-1)4n=[(6n-5)4n+5] ∴Tn=[(6n-5)4n+5]
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P一ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.PA=PD=AD=2,点M在线段PC上 PM=manfen5.com 满分网PC
(1)证明:PA∥平面MQB;
(2)若平面PAD⊥平面ABCD,求二面角M-BQ-C.

manfen5.com 满分网 查看答案
我校开设甲、乙、丙三门校本选修课程,学生是否选修哪门课互不影响.己知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门的概率是0.88.
(1)求学生李华选甲校本课程的概率;
(2)用ξ表示该学生选修的校本课程门数和没有选修的校本课程门数的乘积,求ξ的分布列和数学期望.
查看答案
△ABC中,a,b,c分别是角A、B、C的对边,向量manfen5.com 满分网
(1)求角B的大小;
(2)若a=manfen5.com 满分网,b=1,求c的值.
查看答案
以抛物线y2=20x为圆心,且与双曲线:manfen5.com 满分网的两条渐近线都相切的圆的方程为    查看答案
已知函数f(x)=-3x2+ax+b,若a,b都是在区间[0,4]内任取一个数,则f(1)>0概率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.