满分5 > 高中数学试题 >

[A.(选修4-1:几何证明选讲) 如图,圆O的直径AB=8,C为圆周上一点,B...

[A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.

manfen5.com 满分网
连接OC,BE,AC,由圆的直径所对圆周角为直角的性质可得BE⊥AE.由BC=4=OB=OC,可得△OBC为正三角形,因此∠ABC=60°,可得∠COB=60°.又直线l切⊙O于C,利用切线的性质可得OC⊥l,于是OC∥AD,可得∠EAB=∠COB=60°.在Rt△BAE中,由∠EBA=30°,即可得出AE. 【解析】 连接OC,BE,AC,则BE⊥AE. ∵BC=4,∴OB=OC=BC=4,即△OBC为正三角形, ∴∠CBO=∠COB=60°. 又直线l切⊙O与C,∴OC⊥l, ∵AD⊥l,∴AD∥OC. ∴∠EAB=∠COB=60°. 在Rt△BAE中,∴∠EBA=30°, ∴.
复制答案
考点分析:
相关试题推荐
若数列{an}是首项为6-12t,公差为6的等差数列;数列{bn}的前n项和为Sn=3n-t.
(1)求数列{an}和{bn}的通项公式;
(2)若数列{bn}是等比数列,试证明:对于任意的n(n∈N,n≥1),均存在正整数Cn,使得bn+1=amanfen5.com 满分网,并求数列{cn}的前n项和Tn
(3)设数列{dn}满足dn=an•bn,且{dn}中不存在这样的项dt,使得“dk<dk-1与dk<dk+1”同时成立(其中k≥2,k∈N*),试求实数t的取值范围.
查看答案
对于定义在区间D上的函数f(x),若任给x∈D,均有f(x)∈D,则称函数f(x)在区间D上封闭.
(1)试判断f(x)=x-1在区间[-2.1]上是否封闭,并说明理由;
(1)若函数g(x)=manfen5.com 满分网在区间[3,10]上封闭,求实数a的取值范围;
(1)若函数h(x)=x3-3x在区间[a,b[(a,b∈Z)上封闭,求a,b的值.
查看答案
如图,在平面直角坐标系xOy中,已知椭圆C:manfen5.com 满分网=1(a>b>0)经过点M(3manfen5.com 满分网manfen5.com 满分网),椭圆的离心率e=manfen5.com 满分网,F1、F2分别是椭圆的左、右焦点.
(1)求椭圆C的方程;
(2)过点M作两直线与椭圆C分别交于相异两点A、B.
①若直线MA过坐标原点O,试求△MAF2外接圆的方程;
②若∠AMB的平分线与y轴平行,试探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.

manfen5.com 满分网 查看答案
近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费C(单位:万元)与安装的这种太阳能电池板的面积x(单位:平方米)之间的函数关系是C(x)=manfen5.com 满分网(x≥0,k为常数).记F为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.
(1)试解释C(0)的实际意义,并建立F关于x的函数关系式;
(2)当x为多少平方米时,F取得最小值?最小值是多少万元?
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c.
(1)若cos(A+manfen5.com 满分网)=sinA,求A的值;
(2)若cosA=manfen5.com 满分网,4b=c,求sinB的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.