满分5 > 高中数学试题 >

已知函数,f(x)=alnx-ax-3(a∈R). (1 )当a=1时,求函数f...

已知函数,f(x)=alnx-ax-3(a∈R).
(1 )当a=1时,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t[1,2],函数manfen5.com 满分网在区间(t,3)丨上总存在极值?
利用导数求函数的单调区间的步骤是①求导函数f′(x);②解f′(x)>0(或<0);③得到函数的增区间(或减区间), 对于本题的(1)在求单调区间时要注意函数的定义域以及对参数a的讨论情况; (2)点(2,f(2))处的切线的倾斜角为45°,即切线斜率为1,即f'(2)=1,可求a值,代入得g(x)的解析式,由t∈[1,2],且g(x)在区间(t,3)上总不是单调函数可知:,于是可求m的范围. 【解析】 (Ⅰ) , 当a=1时, 令导数大于0,可解得0<x<1,令导数小于0,可解得x<0(舍)或x>1 故函数的单调增区间为(0,1),单调减区间是(1,+∞) (Ⅱ) 得a=-2,f(x)=-2lnx+2x-3 ∴, ∴g'(x)=3x2+(m+4)x-2 ∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=-2 ∴, 由题意知:对于任意的t∈[1,2],g′(t)<0恒成立, 所以有:, ∴.
复制答案
考点分析:
相关试题推荐
设椭圆manfen5.com 满分网的左右焦点分别为F1、F2A是椭圆C上的一点,且manfen5.com 满分网,坐标原点O到直线AF1的距离为manfen5.com 满分网
(1)求椭圆C的方程;
(2)设Q是椭圆C上的一点,过点Q的直线l交x轴于点F(-1,0),交y轴于点M,若|MQ|=2|QF|,求直线l的斜率.
查看答案
设数列设数列{an}的前n项和为Sn,且Sn2-2Sn-ansn+1=0,n=1,2,3…
(1)求a1,a2
(2)求证:数列{manfen5.com 满分网}是等差数列,并求Sn的表达式.
查看答案
如图,C、D是以AB为直径的圆上两点,AB=2AD=manfen5.com 满分网,AC=BC,F是AB上一点,且manfen5.com 满分网,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知manfen5.com 满分网
(1)求证:AD⊥平面BCE;
(2)求证:AD∥平面CEF;
(3)求三棱锥A-CFD的体积.

manfen5.com 满分网 查看答案
manfen5.com 满分网某高校在2010年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示,
(1)求第三、四、五组的频率;
(2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率.
查看答案
△ABC中,角A、B、C对边分别是a、b、c,满足manfen5.com 满分网
(Ⅰ)求角A的大小;
(Ⅱ)求manfen5.com 满分网的最大值,并求取得最大值时角B、C的大小.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.