满分5 > 高中数学试题 >

已知椭圆(a>b>0)的右焦点为F2(3,0),离心率为e. (Ⅰ)若,求椭圆的...

已知椭圆manfen5.com 满分网(a>b>0)的右焦点为F2(3,0),离心率为e.
(Ⅰ)若manfen5.com 满分网,求椭圆的方程;
(Ⅱ)设直线y=kx与椭圆相交于A,B两点,若manfen5.com 满分网,且manfen5.com 满分网,求k的取值范围.
(I)先根据椭圆方程,根据条件列出关于a,b,c的方程,求出a,b,c即可得到结论. (II)因为直线和椭圆有两个不同的交点,所以两方程联立化成关于x的一元二次方程,可运用设而不求的办法把设出的A,B点的坐标代入向量的数量积公式,求出k关于a的函数表达式,进一步整理后求出函数的值域即可. 【解析】 (I)由题得:c=3,=⇒a=2,b=. 故椭圆方程为; (II)由得(b2+a2k2)x2-a2b2=0, 设A(x1,y1),B(x2,y2),∴x1+x2=0,x1x2=,又=(3-x1,-y1), =(3-x2,-y2),∴=(1+k2)x1x2+9=0,即, ∴k2==-1-, ∵<e≤, ∴2≤a≤3,12≤a2≤18, ∴k2,即 k∈(-∞,-]∪[,+∞).
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(1)求证:EF∥平面ABC1D1
(2)求证:EF⊥B1C;
(3)求三棱锥manfen5.com 满分网的体积.
查看答案
数列{an}满足a1=1,an+1=manfen5.com 满分网(n∈N*).
(Ⅰ)证明:数列{manfen5.com 满分网}是等差数列;
(Ⅱ)求数列{an}的通项公式an
(Ⅲ)设manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
已知△ABC的角A、B、C所对的边分别是a、b、c,设向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网,求证:△ABC为等腰三角形;
(2)若manfen5.com 满分网manfen5.com 满分网,边长c=2,角C=manfen5.com 满分网,求△ABC的面积.
查看答案
有10台型号相同的联合收割机,收割一片土地上的庄稼.现有两种工作方案:第一种方案,同时投入并连续工作至收割完毕;第二种方案,每隔相同时间先后投入,每一台投入后都连续工作至收割完毕.若采用第一种方案需要24小时,而采用第二种方案时,第一台投入工作的时间恰好为最后一台投入工作时间的5倍,则采用第二种方案时第一台收割机投入工作的时间为    小时. 查看答案
若直线y=kx+1与圆O:x2+y2=1交于A、B两点,且∠AOB=60°,则实数k=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.