先分布求出甲,乙,丙三名运动员射击成绩的平均分,然后根据方差公式求出相应的方差,比较大小可得标准差的大小.
【解析】
甲的平均成绩为(7+8+9+10)×0.25=8.5,其方差为s甲2=0.25×[(7-8.5)2+(8-8.5)2+(9-8.5)2+(10-8.5)2]=1.25
乙的平均成绩为7×0.3+8×0.2+9×0.2+10×0.3=8.5,其方差为s乙2=0.3×(7-8.5)2+0.2×(8-8.5)2+0.2×(9-8.5)2+0.3×(10-8.5)2=1.45
丙的平均成绩为7×0.2+8×0.3+9×0.3+10×0.2=8.5,其方差为s丙2=0.2×(7-8.5)2+0.3×(8-8.5)2+0.3×(9-8.5)2+0.2×(10-8.5)2=1.05
∴s丙2<s甲2<s乙2
∴s丙<s甲<s乙
故选D.