求以点A(2,0)为圆心,且过点B(2
,
)的圆的极坐标方程.
考点分析:
相关试题推荐
变换T
1是逆时针旋转
的旋转变换,对应的变换矩阵是M
1;变换T
2对应用的变换矩阵是
.
(Ⅰ)求点P(2,1)在T
1作用下的点P'的坐标;
(Ⅱ)求函数y=x
2的图象依次在T
1,T
2变换的作用下所得曲线的方程.
查看答案
已知:如图,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,连接DB、DE、OC.若AD=2,AE=1,求CD的长.
查看答案
如果存在常数a使得数列{a
n}满足:若x是数列{a
n}中的一项,则a-x也是数列{a
n}中的一项,称数列{a
n}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列b
n的项数是n
(n
≥3),所有项之和是B,求证:数列b
n是“兑换数列”,并用n
和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{c
n},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.
查看答案
已知函数f(x)=ln(2+3x)-
x
2.
(1)求函数y=f(x)的极大值;
(2)令g(x)=f(x)+
x
2+(m-1)x(m为实常数),试判断函数g(x)的单调性;
(3)若对任意x∈
,不等式|a-lnx|+ln[f′(x)+3x]>0均成立,求实数a的取值范围.
查看答案
如图,AB是沿太湖南北方向道路,P为太湖中观光岛屿,Q为停车场,PQ=5.2km.某旅游团游览完岛屿后,乘游船回停车场Q,已知游船以13km/h的速度沿方位角θ的方向行驶,
.游船离开观光岛屿3分钟后,因事耽搁没有来得及登上游船的游客甲为了及时赶到停车地点Q与旅游团会合,立即决定租用小船先到达湖滨大道M处,然后乘出租汽车到点Q(设游客甲到达湖滨大道后能立即乘到出租车).假设游客甲乘小船行驶的方位角是α,出租汽车的速度为66km/h.
(Ⅰ)设
,问小船的速度为多少km/h时,游客甲才能和游船同时到达点Q;
(Ⅱ)设小船速度为10km/h,请你替该游客设计小船行驶的方位角α,当角α余弦值的大小是多少时,游客甲能按计划以最短时间到达Q.
查看答案