满分5 > 高中数学试题 >

设函数f(x)=x+ax2+blnx,曲线,y=f(x)过P(1,0),且在P点...

设函数f(x)=x+ax2+blnx,曲线,y=f(x)过P(1,0),且在P点处的切线率为2.
(Ⅰ)求a,b的值;
(Ⅱ)证明:f(x)≤2x-2.
(Ⅰ)救出函数的导数,再利用f(1)=0以及f′(1)=2建立方程组,联解可得a,b的值; (Ⅱ)转化为证明函数y=f(x)-(2x-2)的最大值不超过0,用导数工具讨论单调性,可得此函数的最大值. 【解析】 (Ⅰ)f'(x)=1+2ax+, 由已知条件得:,即 解之得:a=-1,b=3 (Ⅱ)f(x)的定义域为(0,+∞),由(Ⅰ)知f(x)=x-x2+3lnx, 设g(x)=f(x)-(2x-2)=2-x-x2+3lnx,则 = 当时0<x<1,g′(x)>0;当x>1时,g′(x)<0 所以在(0,1)上单调递增,在(1,+∞)上单调递减 ∴g(x)在x=1处取得最大值g(1)=0 即当x>0时,函数g(x)≤0 ∴f(x)≤2x-2在(0,+∞)上恒成立
复制答案
考点分析:
相关试题推荐
已知a>0,函数f(x)=lnx-ax2,x>0.(f(x)的图象连续不断)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当manfen5.com 满分网时,证明:存在x∈(2,+∞),使manfen5.com 满分网
(Ⅲ)若存在均属于区间[1,3]的α,β,且β-α≥1,使f(α)=f(β),证明manfen5.com 满分网
查看答案
已知函数f(x)=manfen5.com 满分网x+manfen5.com 满分网,h(x)=manfen5.com 满分网
(Ⅰ)设函数F(x)=f(x)-h(x),求F(x)的单调区间与极值;
(Ⅱ)设a∈R,解关于x的方程㏒4[manfen5.com 满分网f(x-1)-manfen5.com 满分网]=㏒2h(a-x)-㏒2h(4-x);
(Ⅲ)试比较f(100)h(100)-manfen5.com 满分网manfen5.com 满分网的大小.
查看答案
已知函数f(x)=ex-ax-1(a为实数),g(x)=lnx-x.
(1)讨论函数f(x)的单调区间;
(2)求函数g(x)的极值;
(3)证明:manfen5.com 满分网(n∈N,n≥2).
查看答案
设函数f(x)=1-e-x
(Ⅰ)证明:当x>-1时,f(x)≥manfen5.com 满分网
(Ⅱ)设当x≥0时,f(x)≤manfen5.com 满分网,求a的取值范围.
查看答案
定义F(x,y)=(1+x)y,x,y∈(0,+∞)
(1)令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线c1,曲线c1与y轴交于点A(0,m),过坐标原点O作曲线c1的切线,切点为B(n,t)(n>0)设曲线c1在点A、B之间的曲线段与OA、OB所围成图形的面积为S,求S的值;
(2)当x,y∈N*且x<y时,证明F(x,y)>F(y,x).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.