设函数f(x)=lnx-
ax
2-bx.
(Ⅰ)当a=b=
时,求f(x)的最大值;
(Ⅱ)令F(x)=f(x)+
ax
2+bx+
(0<x≤3),以其图象上任意一点P(x
,y
)为切点的切线的斜率k≤
恒成立,求实数a的取值范围;
(Ⅲ)当a=0,b=-1时,方程2mf(x)=x
2有唯一实数解,求正数m的值.
考点分析:
相关试题推荐
已知f(x)=ax-lnx,x∈(0,e],g(x)=
,其中e是自然常数,a∈R.
(1)讨论a=1时,函数f(x)的单调性和极值;
(2)求证:在(1)的条件下,f(x)>g(x)+
;
(3)是否存在实数a使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.
查看答案
设函数f(x)=x+ax
2+blnx,曲线,y=f(x)过P(1,0),且在P点处的切线率为2.
(Ⅰ)求a,b的值;
(Ⅱ)证明:f(x)≤2x-2.
查看答案
已知a>0,函数f(x)=lnx-ax
2,x>0.(f(x)的图象连续不断)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当
时,证明:存在x
∈(2,+∞),使
;
(Ⅲ)若存在均属于区间[1,3]的α,β,且β-α≥1,使f(α)=f(β),证明
.
查看答案
已知函数f(x)=
x+
,h(x)=
.
(Ⅰ)设函数F(x)=f(x)-h(x),求F(x)的单调区间与极值;
(Ⅱ)设a∈R,解关于x的方程㏒
4[
f(x-1)-
]=㏒
2h(a-x)-㏒
2h(4-x);
(Ⅲ)试比较f(100)h(100)-
与
的大小.
查看答案
已知函数f(x)=e
x-ax-1(a为实数),g(x)=lnx-x.
(1)讨论函数f(x)的单调区间;
(2)求函数g(x)的极值;
(3)证明:
(n∈N,n≥2).
查看答案